Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stability of R 3-dynamical systems with symmetry.

dc.contributor.authorGonzalez Gascón, F.
dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.date.accessioned2023-06-20T18:46:09Z
dc.date.available2023-06-20T18:46:09Z
dc.date.issued1999
dc.description.abstractThe study of the stability of a periodic solution p of a vector field using either the linear variational equations (associated to the vector field at p ), or the Poincaré map on a cross section, is known to present some difficulties. This work provides some techniques to ascertain the stability of the closed curve C={p 0 (t): t∈R} in the case of an R 3 analytic vector field X → possessing symmetries. It is assumed that one or more symmetry vectors S → are known (the Lie derivative of S → along the streamlines of X → , L X → (S → ) , is zero modulus X → ). One of the cases for which the stability of the closed curve can be determined is that of a divergence-free field X → having a known symmetry S → satisfying L X → (S → )=λ(x)X → and divS → =λ(x) . This is an interesting case because many devices used in the confinement of plasma possess symmetries of this type (X → is the magnetic induction vector B → ) with λ(x)=0 . This type of symmetry implies torus-like magnetic surfaces. It is noted that it constitutes an interesting (and difficult) problem to find examples of vector fields with symmetries for which λ≠0 . All the proofs are simple, and the technique is very nice.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21780
dc.identifier.issn0369-3554
dc.identifier.officialurlhttp://www.sif.it/riviste/ncb/econtents/1999/114/03/article/8
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58558
dc.issue.number3
dc.journal.titleIl Nuovo Cimento della Società Italiana di Fisica. B
dc.page.final280
dc.page.initial273
dc.publisherSocietà Italiana di Fisica
dc.rights.accessRightsmetadata only access
dc.subject.cdu5151.1
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleStability of R 3-dynamical systems with symmetry.
dc.typejournal article
dc.volume.number114
dspace.entity.typePublication

Download

Collections