Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deactivation and regeneration of activated carbon-supported Rh and Ru catalysts in the hydrodechlorination of chloromethanes into light olefins

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Maria Martin-Martinez, Juan J. Rodriguez, Richard T. Baker, Luisa M. Gómez-Sainero, Deactivation and regeneration of activated carbon-supported Rh and Ru catalysts in the hydrodechlorination of chloromethanes into light olefins, Chemical Engineering Journal, Volume 397, 2020, 125479, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2020.125479.

Abstract

This work analyses the deactivation of activated carbon-supported Rh and Ru (both at 1 wt%) catalysts (Rh/C and Ru/C) in the hydrodechlorination (HDC) of dichloromethane (DCM) and chloroform (TCM). The deactivation can be mainly attributed to the coverage of active metal centres by organometallic species resulting from the chemisorption of reaction products, such as olefins, at the electro-deficient metal sites. With DCM, the activity of Ru/C decreased by more than 80% after 90 h on stream at 250 °C and with a space time of 1.7 kg h mol−1. Under the same conditions, with TCM, the Rh/C and Ru/C catalysts lost 75% of activity after 84 and 54 h on stream, respectively. A regeneration treatment with air at 250 °C allowed complete recovery of the catalytic activity. After each deactivation-regeneration cycle, the selectivity to olefins increased. Therefore, HDC with the catalysts tested provides a promising way for the upgrading of chloromethanes from waste gas streams into light olefins

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections