Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

l(q)-structure of variable exponent spaces

dc.contributor.authorHernández, Francisco L.
dc.contributor.authorRuiz Bermejo, César
dc.date.accessioned2023-06-20T00:14:19Z
dc.date.available2023-06-20T00:14:19Z
dc.date.issued2012-05-15
dc.description.abstractIt is shown that a separable variable exponent (or Nakano) function space L-p(.)(Ω) has a lattice-isomorphic copy of l(q) if and only if q is an element of Rp(.), the essential range set of the exponent function p(.). Consequently Rp(.) is a lattice-isomorphic invariant set. The values of q such that l(q) embeds isomorphically in L-p(.)(Ω) is determined. It is also proved the existence of a bounded orthogonal l(q)-projection in the space L-p(.)(Ω), for every q is an element of Rp(.)
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15969
dc.identifier.doi10.1016/j.jmaa.2011.12.033
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X11011504
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42249
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final907
dc.page.initial899
dc.publisherElsevier
dc.relation.projectIDMTM2008-02652
dc.rights.accessRightsrestricted access
dc.subject.cdu517.982.27
dc.subject.cdu517.982.2
dc.subject.keywordOrlicz sequence-spaces
dc.subject.keywordcopies
dc.subject.keywordvariable exponent spaces
dc.subject.keywordisomorphic l(p)-copies
dc.subject.keywordbounded projections
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titlel(q)-structure of variable exponent spaces
dc.typejournal article
dc.volume.number389
dcterms.referencesC. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988. S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996). L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer, 2011. S. Guerre-Delabrière, Classical Sequences in Banach Spaces, Marcel Dekker, 1992. F.L. Hernández, B. Rodriguez-Salinas, Remarks on the Orlicz function spaces Lϕ(0,∞), Math. Narch. 156 (1992) 225–232. H. Hudzik, On some equivalent conditions in Musielak–Orlicz spaces, Comment. Math. (Prace Mat.) 24 (1984) 57–64. W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979). A. Kaminska, Flat Orlicz–Musielak sequence spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982) 347–352. A. Kaminska, Indices, convexity and concavity in Musielak–Orlicz spaces, Funct. Approx. Comment. Math. 26 (1998) 67–84 (special issue dedicated to J. Musielak). A. Kaminska, B. Turet, Type and cotype in Musielak–Orlicz spaces, Lecture Notes London Math. Soc. 138 (1990) 165–180. O. Kovacik, J. Rakosnik, On spaces Lp(x) and Wk,p(x) , Czechoslovak Math. J. 41 (1991) 592–618. M.A. Krasnosel’skii, Y. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., 1961. J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces III, Israel J. Math. 14 (1973) 368–389. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, 1979. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer, 1983. V. Peirats, Espacios modulares de sucesiones vectoriales. Subespacios, Ph.D. Thesis, Madrid Complutense University, 1986 (in Spanish). V. Peirats, C. Ruiz, On lp -copies in Musielak–Orlicz sequence spaces, Arch. Math. 58 (1992) 164–173. L.P. Poitevin, Y. Raynaud, Ranges of positive contractive projections in Nakano spaces, Indag. Math. 19 (2008) 441–464. M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, 2000. C. Samuel, Sur la reproductibilite des espaces lp , Math. Scand. 45 (1979) 103–117. W. Wnuk, Banach lattices with properties of the Schur type – A survey, Conf. Sem. Math. Univ. Bari 249 (1993), 25 pp. J.Y. Wood, On modular sequence spaces, Studia Math. 48 (1973) 271–289. B. Zlatanov, Schur property and lp isomorphic copies in Musielak–Orlicz sequence spaces, Bull. Aust. Math. Soc. 75 (2007) 193–210.
dspace.entity.typePublication
relation.isAuthorOfPublication99883408-190b-4f61-be14-23d8126a2710
relation.isAuthorOfPublication.latestForDiscovery99883408-190b-4f61-be14-23d8126a2710

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HerRod01.pdf
Size:
187.77 KB
Format:
Adobe Portable Document Format

Collections