Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pricing Strategy versus Heterogeneous Shopping Behavior under Market Price Dispersion

dc.contributor.authorÁlvarez González, Francisco
dc.contributor.authorRey Simo, José Manuel
dc.contributor.authorSanchis, Raúl G.
dc.date.accessioned2023-06-18T05:54:48Z
dc.date.available2023-06-18T05:54:48Z
dc.date.issued2016
dc.description.abstractWe consider the ubiquitous problem of a seller competing in a market of a product with dispersed prices and having limited information about both his competitors’ prices and the shopping behavior of his potential customers. Given the distribution of market prices, the distribution of consumers’ shopping behavior, and the seller’s cost as inputs, we find the computational solution for the pricing strategy that maximizes his expected profits. We analyze the seller’s solution with respect to different exogenous perturbations of parametric and functional inputs. For that purpose, we produce synthetic price data using the family of Generalized Error Distributions that includes normal and quasiuniform distributions as particular cases, and we also generate consumers’ shopping data from different behavioral assumptions. Our analysis shows that, beyond price mean and dispersion, the shape of the price distribution plays a significant role in the seller’s pricing solution. We focus on the seller’s response to an increasing diversity in consumers’ shopping behavior. We show that increasing heterogeneity in the shopping distribution typically lowers seller’s prices and expected profits.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55305
dc.identifier.issn1687-0409
dc.identifier.officialurlhttp://dx.doi.org/10.1155/2016/3254240
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23578
dc.issue.number325424
dc.journal.titleAbstract and Applied Analysis
dc.language.isoeng
dc.page.final8
dc.page.initial1
dc.publisherHindawi Publishing Corporation
dc.relation.projectIDAGL2015-69697-P
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordUnitary production cost
dc.subject.keywordEconomic agents
dc.subject.keywordPrices of competitors
dc.subject.keywordShopping behaviour.
dc.subject.ucmComercio
dc.subject.ucmIndicadores económicos
dc.subject.unesco5304.03 Comercio exterior
dc.subject.unesco5302.01 Indicadores Económicos
dc.titlePricing Strategy versus Heterogeneous Shopping Behavior under Market Price Dispersion
dc.typejournal article
dcterms.references[1] J. Bertrand, “Review of Cournot,” Journal des Savants, vol. 67, pp. 499–508, 1838. [2] M. R. Baye, J. Morgan, and P. Scholten, “Information, search, and price dispersion,” in Handbook on Economics and Information Systems, vol. 1, 2006. [3] G. Kaplan and G. Menzio, “The morphology of price dispersion,” International Economic Review, vol. 56, no. 4, pp. 1165–1206, 2015. [4] G. J. Stigler, “The Economics of Information,” Journal of Political Economy, vol. 69, no. 3, pp. 213–225, 1961. [5] K. Burdett and K. L. Judd, “Equilibrium price dispersion,” Econometrica, vol. 51, no. 4, pp. 955–969, 1983. [6] F. Alvarez, J.-M. Rey, and R. G. Sanchis, “Choice overload, satisficing behavior, and price distribution in a time allocation model,” Abstract and Applied Analysis, vol. 2014, Article ID 569054, 9 pages, 2014. [7] B. Scheibehenne, R. Greifeneder, and P. M. Todd, “Can there ever be too many options? A meta-analytic review of choice overload,” Journal of Consumer Research, vol. 37, no. 3, pp. 409–425, 2010. [8] R. G. Sanchis, J.-M. Rey, and F.Alvarez, “Numerical analysis of a time allocation model accounting for choice overload,” International Journal of Computer Mathematics, vol. 91, no. 2, pp. 315–326, 2014. [9] B. Schwartz, “Self-determination: the tyranny of freedom,” American Psychologist, vol. 55, no. 1, pp. 79–88, 2000. [10] S. S. Iyengar and M. R. Lepper, “When choice is demotivating: can one desire too much of a good thing?” Journal of Personality and Social Psychology, vol. 79, no. 6, pp. 995–1006, 2000. [11] B. Schwartz, A. Ward, J. Monterosso, S. Lyubomirsky, K. White, and D. R. Lehman, “Maximizing versus satisficing: happiness is a matter of choice,” Journal of Personality and Social Psychology, vol. 83, no. 5, pp. 1178–1197, 2002. [12] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014, http://www.R-project.org/. [13] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, John Wiley & Sons, New York, NY, USA, 2011. [14] R. M. Gray, Entropy and Information Theory, Springer, New York, NY, USA, 1990.
dspace.entity.typePublication
relation.isAuthorOfPublication5c6d1bab-3a96-455e-96d4-556c4c6c23da
relation.isAuthorOfPublication4749e40a-a59b-4407-8e28-6bc2340eee88
relation.isAuthorOfPublication.latestForDiscovery5c6d1bab-3a96-455e-96d4-556c4c6c23da

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Álvarez-Pricing Strategy (OA).pdf
Size:
930.58 KB
Format:
Adobe Portable Document Format

Collections