Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

From multi- to single-hollow trimetallic nanocrystals by ultrafast heating

dc.contributor.authorManzaneda González, Vanesa
dc.contributor.authorJenkinson, Kellie
dc.contributor.authorPeña-Rodríguez, Ovidio
dc.contributor.authorBorrell Grueiro, Olivia
dc.contributor.authorTriviño-Sánchez, Sergio
dc.contributor.authorBañares Morcillo, Luis
dc.contributor.authorJunquera González, María Elena
dc.contributor.authorEspinosa, Ana
dc.contributor.authorGonzález-Rubio, Guillermo
dc.contributor.authorBals, Sara
dc.contributor.authorGuerrero Martínez, Andrés
dc.date.accessioned2024-10-16T07:28:13Z
dc.date.available2024-10-16T07:28:13Z
dc.date.issued2023
dc.description.abstractMetal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core−shell nanostructures containing small cavities at the Au−PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.statuspub
dc.identifier.citationManzaneda-González, Vanesa, et al. «From Multi- to Single-Hollow Trimetallic Nanocrystals by Ultrafast Heating». Chemistry of Materials, vol. 35, n.o 22, noviembre de 2023, pp. 9603-12. DOI.org (Crossref), https://doi.org/10.1021/acs.chemmater.3c01698
dc.identifier.doi10.1021/acs.chemmater.3c01698
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.officialurlhttps://doi.org/10.1021/acs.chemmater.3c01698
dc.identifier.relatedurlpubs.acs.org/cm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108992
dc.journal.titleChemistry of Materials
dc.language.isoeng
dc.page.final9612
dc.page.initial9603
dc.publisherACS
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2021-123228NB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2021-122839NB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2019-105325RB-C32
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2021-127033OB-C21
dc.relation.projectIDCAM/ANTICIPA-UCM
dc.relation.projectIDCAM/P2018/NMT-4389
dc.relation.projectIDCAM/P2018/S2018/EMT- 4437
dc.relation.projectIDEurofusion/EH150531176
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu544
dc.subject.keywordMetal nanocrystals
dc.subject.keywordHollow multimetallic heterostructures
dc.subject.keywordFemtosecond-pulsed laser irradiation
dc.subject.keywordCore−shell nanostructures
dc.subject.ucmQuímica física (Química)
dc.subject.unesco2307 Química Física
dc.titleFrom multi- to single-hollow trimetallic nanocrystals by ultrafast heating
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number35
dspace.entity.typePublication
relation.isAuthorOfPublication1e5dbfe9-d8fa-4335-b08f-52bbc4855319
relation.isAuthorOfPublicationbd2baadf-b7c9-45f6-aae5-abb50b74dc97
relation.isAuthorOfPublicationb2340482-256f-41d0-ad15-29806cf6a753
relation.isAuthorOfPublication3d4e45e9-f8ae-4547-8194-1b781fcec865
relation.isAuthorOfPublication22761001-a3ad-4b9e-b47f-bfd3ba5f8a57
relation.isAuthorOfPublication.latestForDiscovery1e5dbfe9-d8fa-4335-b08f-52bbc4855319

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChemMat_MULTIHOLLOWS NCs_2023.pdf
Size:
6.1 MB
Format:
Adobe Portable Document Format

Collections