Machine learning applied to omics data
dc.book.title | Statistical methods at the forefront of biomedical advances | en |
dc.contributor.author | Calviño Martínez, Aída | |
dc.contributor.author | Moreno Ribera, Almudena | |
dc.contributor.author | Pineda Sanjuan, Silvia | |
dc.contributor.editor | Larriba, Yolanda | |
dc.date.accessioned | 2023-12-21T10:39:43Z | |
dc.date.available | 2023-12-21T10:39:43Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this chapter we illustrate the use of some Machine Learning techniques in the context of omics data. More precisely, we review and evaluate the use of Random Forest and Penalized Multinomial Logistic Regression for integrative analysis of genomics and immunomics in pancreatic cancer. Furthermore, we propose the use of association rules with predictive purposes to overcome the low predictive power of the previously mentioned models. Finally, we apply the reviewed methods to a real data set from TCGA made of 107 tumoral pancreatic samples and 117,486 germline SNPs, showing the good performance of the proposed methods to predict the immunological infiltration in pancreatic cancer. | en |
dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | AstraZeneca | |
dc.description.status | pub | |
dc.identifier.citation | Calviño, A., Moreno-Ribera, A., Pineda, S., & Larriba, Yolanda. (2023). Statistical methods at the forefront of biomedical advances. In Machine learning applied to omics data (pp. 21–43). | |
dc.identifier.doi | 10.1007/978-3-031-32729-2_2 | |
dc.identifier.isbn | 978-3-031-32728-5 | |
dc.identifier.isbn | 978-3-031-32729-2 | |
dc.identifier.officialurl | https://doi.org/10.1007/978-3-031-32729-2_2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/91677 | |
dc.language.iso | eng | |
dc.page.final | 43 | |
dc.page.initial | 21 | |
dc.page.total | 23 | |
dc.publisher | Springer | |
dc.relation.projectID | 19-40-12-PINE | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 004.6 | |
dc.subject.cdu | 616-006.04 | |
dc.subject.keyword | Genomics | |
dc.subject.keyword | High-throughput data | |
dc.subject.keyword | Association rules | |
dc.subject.keyword | Random Forest | |
dc.subject.keyword | LASSO | |
dc.subject.ucm | Muestreo (Estadística) | |
dc.subject.ucm | Oncología | |
dc.subject.unesco | 1209.03 Análisis de Datos | |
dc.subject.unesco | 3201.01 Oncología | |
dc.title | Machine learning applied to omics data | en |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 9910901c-7e34-482c-b57c-470f4e445cfb | |
relation.isAuthorOfPublication | 9ff02bb9-3623-452e-ad72-8bb19687ec4e | |
relation.isAuthorOfPublication.latestForDiscovery | 9910901c-7e34-482c-b57c-470f4e445cfb |