Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine learning applied to omics data

dc.book.titleStatistical methods at the forefront of biomedical advancesen
dc.contributor.authorCalviño Martínez, Aída
dc.contributor.authorMoreno Ribera, Almudena
dc.contributor.authorPineda Sanjuan, Silvia
dc.contributor.editorLarriba, Yolanda
dc.date.accessioned2023-12-21T10:39:43Z
dc.date.available2023-12-21T10:39:43Z
dc.date.issued2023
dc.description.abstractIn this chapter we illustrate the use of some Machine Learning techniques in the context of omics data. More precisely, we review and evaluate the use of Random Forest and Penalized Multinomial Logistic Regression for integrative analysis of genomics and immunomics in pancreatic cancer. Furthermore, we propose the use of association rules with predictive purposes to overcome the low predictive power of the previously mentioned models. Finally, we apply the reviewed methods to a real data set from TCGA made of 107 tumoral pancreatic samples and 117,486 germline SNPs, showing the good performance of the proposed methods to predict the immunological infiltration in pancreatic cancer.en
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipAstraZeneca
dc.description.statuspub
dc.identifier.citationCalviño, A., Moreno-Ribera, A., Pineda, S., & Larriba, Yolanda. (2023). Statistical methods at the forefront of biomedical advances. In Machine learning applied to omics data (pp. 21–43).
dc.identifier.doi10.1007/978-3-031-32729-2_2
dc.identifier.isbn978-3-031-32728-5
dc.identifier.isbn978-3-031-32729-2
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-32729-2_2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91677
dc.language.isoeng
dc.page.final43
dc.page.initial21
dc.page.total23
dc.publisherSpringer
dc.relation.projectID19-40-12-PINE
dc.rights.accessRightsmetadata only access
dc.subject.cdu004.6
dc.subject.cdu616-006.04
dc.subject.keywordGenomics
dc.subject.keywordHigh-throughput data
dc.subject.keywordAssociation rules
dc.subject.keywordRandom Forest
dc.subject.keywordLASSO
dc.subject.ucmMuestreo (Estadística)
dc.subject.ucmOncología
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco3201.01 Oncología
dc.titleMachine learning applied to omics dataen
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication9910901c-7e34-482c-b57c-470f4e445cfb
relation.isAuthorOfPublication9ff02bb9-3623-452e-ad72-8bb19687ec4e
relation.isAuthorOfPublication.latestForDiscovery9910901c-7e34-482c-b57c-470f4e445cfb

Download