Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Galaxy classification: deep learning on the OTELO and COSMOS databases

dc.contributor.authorde Diego, José A.
dc.contributor.authorNadolny, Jakub
dc.contributor.authorBongiovanni, Ángel
dc.contributor.authorCepa, Jordi
dc.contributor.authorPovic, Mirjana
dc.contributor.authorPérez García, Ana María
dc.contributor.authorPadilla Torres, Carmen P.
dc.contributor.authorLara-López, Maritza A.
dc.contributor.authorCerviño, Miguel
dc.contributor.authorPérez Martínez, Ricardo
dc.contributor.authorAlfaro, Emilio J.
dc.contributor.authorCastañeda, Héctor O.
dc.contributor.authorFernández-Lorenzo, Miriam
dc.contributor.authorGallego Maestro, Jesús
dc.contributor.authorGonzález, J. Jesús
dc.contributor.authorGonzález-Serrano, J. Ignacio
dc.contributor.authorPintos-Castro, Irene
dc.contributor.authorSánchez-Portal, Miguel
dc.contributor.authorCedrés, Bernabé
dc.contributor.authorGonzález-Otero, Mauro
dc.contributor.authorJones, D. Heath
dc.contributor.authorBland-Hawthorn, Joss
dc.date.accessioned2023-06-16T15:21:40Z
dc.date.available2023-06-16T15:21:40Z
dc.date.issued2020-06-25
dc.description© ESO 2020. Artículo firmado por 22 autores. The authors are grateful to the referee for careful reading of the paper and valuable suggestions and comments. This work was supported by the project Evolution of Galaxies, of reference AYA2014-58861-C3- 1-P and AYA2017-88007-C3-1-P, within the “Programa estatal de fomento de la investigacion cientifica y tecnica de excelencia del Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion (2013–2016)” of the “Agencia Estatal de Investigacion del Ministerio de Ciencia, Innovacion y Universidades”, and co-financed by the FEDER “Fondo Europeo de Desarrollo Regional”. JAD is grateful for the support from the UNAM-DGAPA-PASPA 2019 program, the UNAM-CIC, the Canary Islands CIE: Tricontinental Atlantic Campus 2017, and the kind hospitality of the IAC. MP acknowledges financial supports from the Ethiopian Space Science and Technology Institute (ESSTI) under the Ethiopian Ministry of Innovation and Technology (MoIT), and from the Spanish Ministry of Economy and Competitiveness (MINECO) through projects AYA2013- 42227-P and AYA2016-76682C3-1-P. APG, MSP and RPM were supported by the PNAYA project: AYA2017–88007–C3–2–P. MC and APG are also funded by Spanish State Research Agency grant MDM-2017-0737 (Unidad de Excelencia María de Maeztu CAB). EJA acknowledges support from the Spanish Government Ministerio de Ciencia, Innovación y Universidades though grant PGC2018-095049-B-C21. M.P. and E.J.A. also acknowledge support from the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award for the Instituto de Astrofísica de Andalucía (SEV2017-0709). JG receives support through the project AyA2018-RTI-096188-B100. MALL acknowledges support from the Carlsberg Foundation via a Semper Ardens grant (CF15-0384). JIGS receives support through the Proyecto Puente 52.JU25.64661 (2018) funded by Sodercan S.A. and the Universidad de Cantabria, and PGC2018–099705–B–100 funded by the Ministerio de Ciencia, Innovación y Universidades. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. This work is (partly) based on data obtained with the instrument OSIRIS, built by a Consortium led by the Instituto de Astrofísica de Canarias in collaboration with the Instituto de Astronomía of the Universidad Autónoma de México. OSIRIS was funded by GRANTECAN and the National Plan of Astronomy and Astrophysics of the Spanish Government.
dc.description.abstractContext. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution. Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sérsic index or the concentration index. Methods. We used three classification methods for the OTELO database: (1) u − r color separation, (2) linear discriminant analysis using u − r and a shape parameter classification, and (3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data. Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog. Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged data.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUnidad de Excelencia María de Maeztu
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipthe project Evolution of Galaxies within the “Programa estatal de fomento de la investigacion cientifica y tecnica de excelencia del Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion (2013–2016)” of the “Agencia Estatal de Investigacion d
dc.description.sponsorshipthe UNAM-DGAPA-PASPA 2019 program
dc.description.sponsorshipthe UNAM-CIC
dc.description.sponsorshipthe Canary Islands CIE: Tricontinental Atlantic Campus 2017
dc.description.sponsorshipthe kind hospitality of the IAC
dc.description.sponsorshipthe Ethiopian Space Science and Technology Institute (ESSTI) under the Ethiopian Ministry of Innovation and Technology (MoIT)
dc.description.sponsorshipthe PNAYA project
dc.description.sponsorshipCarlsberg Foundation via a Semper Ardens
dc.description.sponsorshipSodercan S.A. through the Proyecto Puente
dc.description.sponsorshipthe Universidad de Cantabria, Spain, through the Proyecto Puente
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/61988
dc.identifier.doi10.1051/0004-6361/202037697
dc.identifier.issn0004-6361
dc.identifier.officialurlhttp://dx.doi.org/10.1051/0004-6361/202037697
dc.identifier.relatedurlhttps://www.aanda.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6478
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.publisherEDP Sciencies
dc.relation.projectID(AYA2014-58861-C3- 1-P and AYA2017-88007-C3-1-P; PGC2018-095049-B-C21; PGC2018–099705–B–100))
dc.relation.projectID(AYA2013- 42227-P; AYA2016-76682C3-1-P; AYA2017–88007–C3–2–P; ) AYA2018-RTI-096188-B100)
dc.relation.projectIDMDM-2017-0737
dc.relation.projectIDSEV-2017-0709
dc.relation.projectIDCF15-0384
dc.relation.projectID52.JU25.64661 (2018)
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordConvolutional neuronal-networks
dc.subject.keywordStar-formation histories
dc.subject.keywordEvolution survey cosmos
dc.subject.keywordMorphological classification
dc.subject.keywordFundamental properties
dc.subject.keywordPhotometric redshifts
dc.subject.keywordStellar masses
dc.subject.keywordMissing values
dc.subject.keywordDisk
dc.subject.keywordDecomposition
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleGalaxy classification: deep learning on the OTELO and COSMOS databases
dc.typejournal article
dc.volume.number638
dspace.entity.typePublication
relation.isAuthorOfPublication303794a4-e4bf-4262-9a94-11bc46167d8e
relation.isAuthorOfPublication.latestForDiscovery303794a4-e4bf-4262-9a94-11bc46167d8e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jesusgallego149libre.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format

Collections