Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Efficacy of a Deep Learning Convolutional Neural Network System for Melanoma Diagnosis in a Hospital Population

dc.contributor.authorMartin Gonzalez, Manuel
dc.contributor.authorAzcárraga Llobet, Carlos
dc.contributor.authorMartín Gil, Alba
dc.contributor.authorCarpena Torres, Carlos
dc.contributor.authorJaén Olasolo, Pedro
dc.date.accessioned2023-06-22T11:24:39Z
dc.date.available2023-06-22T11:24:39Z
dc.date.issued2022-03-24
dc.description.abstractThe purpose of this study was to evaluate the efficacy in terms of sensitivity, specificity, and accuracy of the quantusSKIN system, a new clinical tool based on deep learning, to distinguish between benign skin lesions and melanoma in a hospital population. (2) Methods: A retrospective study was performed using 232 dermoscopic images from the clinical database of the Ramón y Cajal University Hospital (Madrid, Spain). The skin lesions images, previously diagnosed as nevus (n = 177) or melanoma (n = 55), were analyzed by the quantusSKIN system, which offers a probabilistic percentage (diagnostic threshold) for melanoma diagnosis. The optimum diagnostic threshold, sensitivity, specificity, and accuracy of the quantusSKIN system to diagnose melanoma were quantified. (3) Results: The mean diagnostic threshold was statistically lower (p < 0.001) in the nevus group (27.12 ± 35.44%) compared with the melanoma group (72.50 ± 34.03%). The area under the ROC curve was 0.813. For a diagnostic threshold of 67.33%, a sensitivity of 0.691, a specificity of 0.802, and an accuracy of 0.776 were obtained. (4) Conclusions: The quantusSKIN system is proposed as a useful screening tool for melanoma detection to be incorporated in primary health care systems.
dc.description.departmentDepto. de Optometría y Visión
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78719
dc.identifier.doi10.3390/ijerph19073892
dc.identifier.issn1660-4601
dc.identifier.officialurlhttps://doi.org/10.3390/ijerph19073892
dc.identifier.relatedurlhttps://www.mdpi.com/1660-4601/19/7/3892
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72391
dc.issue.number7
dc.journal.titleInternational Journal of Environmental Research and Public Health
dc.language.isoeng
dc.page.initial3892
dc.publisherMDPI
dc.rights.accessRightsopen access
dc.subject.cdu616-006.04:616.5
dc.subject.cdu616.5-006.81-07
dc.subject.keywordmelanoma
dc.subject.keywordskin cancer
dc.subject.keywordoncology
dc.subject.keywordartificial intelligence
dc.subject.keyworddeep learning
dc.subject.ucmDermatología
dc.subject.ucmOncología
dc.subject.ucmTécnicas de la imagen
dc.subject.unesco3201.06 dermatología
dc.subject.unesco3201.01 Oncología
dc.titleEfficacy of a Deep Learning Convolutional Neural Network System for Melanoma Diagnosis in a Hospital Population
dc.typejournal article
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublication31c5901e-086a-4a75-8243-4baa56947752
relation.isAuthorOfPublication4f02194c-ec22-49e9-8e60-937801ef8ac5
relation.isAuthorOfPublication.latestForDiscovery31c5901e-086a-4a75-8243-4baa56947752

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijerph-19-03892-v2.pdf
Size:
885.65 KB
Format:
Adobe Portable Document Format

Collections