Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

On (V*) sets in Bochner integrable function spaces

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1991

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Seminario matematico e fisico,
Citations
Google Scholar

Citation

Abstract

A subset A of a Banach space E is called a (V*) -set if, for every weakly unconditionally Cauchy (w.u.c.) series ∑x ∗ n in E ∗ , lim n→∞ sup a∈A |x ∗ n (a)|=0 . Following Pełczyński, a Banach space E is said to have property (V*) if every (V*)-set in E is relatively weakly compact. The paper under review is mainly a survey of all known results connected with property (V*) and with another property that the author introduced and called weak (V*) , where a Banach space E is said to have weak (V*) if (V*)-sets in E are weakly conditionally compact

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections