A New Measure of Leverage Cells in Multinomial Loglinear Models

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Taylor & Francis
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this article, a family of measures for detecting leverage cells in multinomial loglinear models based on Renyi's divergence measures is presented and its properties are studied. An example illustrates its behavior.
12th International Symposium on Applied Stochastic Models and Data Analysis.Chania,GREECE. MAY 29-JUN 01, 2007
Unesco subjects
Agresti, A. (2002). Categorical Data Analysis. 2nd ed. New York: John Wiley & Sons. Andersen, E. B. (1992). Diagnosis in categorical data analysis. Journal of the Royal Statistical Society Series B 54:781–791. Belsley, D. A., Kuh, E., Welsh, R. E. (2004). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. 2nd ed. New York: John Wiley & Sons. Cressie, N., Pardo, L. (2000). Minimum Phi-divergence estimator and hierarchical testing in loglinear models. Statistica Sinica 10:867–884. Cressie, N., Pardo, L. (2002). Phi-divergence statistics. In: ElShaarawi, A. H., Piegorich, W. W., eds. Encyclopedia of Environmetrics. Vol. 3. New York: John Wiley & Sons, pp. 1551–1555. Cressie, N., Pardo, L., Pardo, M. C. (2003). Size and power considerations for testing loglinear models using Phi-divergence test statistics. Statistica Sinica 13:550–570. Gupta, K., Nguyen T., Pardo L. (2007). On Christensen’s conjecture. Statistical Papers 48:313–319. Kateri, M., Agresti, A. (2007). A class of ordinal quasi-symmetry models for square contingency tables. Statistics & Probability Letters 77:313–316. Pardo, L. (2006). Statistical Inference Based on Divergence Measures. New York: Chapman & Hall/CRC. Rao, C. R., Toutenburg, H. (1999). Linear Models: Least Squares and Alternatives. 2nd ed. New York: Springer.