C-Scattered Fuzzy Topological Spaces
dc.contributor.author | Gallego Lupiáñez, Francisco | |
dc.date.accessioned | 2023-06-20T16:51:43Z | |
dc.date.available | 2023-06-20T16:51:43Z | |
dc.date.issued | 2001 | |
dc.description.abstract | In this paper, we define the concept of C-scattered fuzzy topological spaces and obtain some properties about them. In particular, we study the relation between C-scattered spaces and its fuzzy extension, it is proved that C-scattered fuzzy topological spaces are invariant by fuzzy perfect maps, and that, in the realm of paracompact fuzzy topological spaces, the C-scattered spaces verify that their product by other fuzzy spaces is also paracompact fuzzy. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15310 | |
dc.identifier.doi | 10.1016/S0893-9659(00)00136-1 | |
dc.identifier.issn | 0893-9659 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0893965900001361 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57258 | |
dc.issue.number | 2 | |
dc.journal.title | Applied Mathematics Letters | |
dc.language.iso | eng | |
dc.page.final | 204 | |
dc.page.initial | 201 | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 5151.1 | |
dc.subject.keyword | Topology | |
dc.subject.keyword | C-scattered and scattered topological spaces | |
dc.subject.keyword | Compactness | |
dc.subject.keyword | Fuzzy perfect maps | |
dc.subject.keyword | S-paracompactness | |
dc.subject.keyword | S*-paracompactness | |
dc.subject.keyword | Fuzzy paracompactness | |
dc.subject.keyword | *-Fuzzy paracompactness. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | C-Scattered Fuzzy Topological Spaces | |
dc.type | journal article | |
dc.volume.number | 14 | |
dcterms.references | R. Telg£rsky, C-scattered and paracompact spaces, Fund. Math. 73, 59-74, (1971). R. Telg£rsky, Spaces defined by topological games, Fund. Math. 86, 193-223, (1975). R. Telg£rsky, Spaces defined by topological games II, Fund. Math. 116, 189-207, (1983). R. Telg~rsky, On sieve-complete and compact-like spaces, Topology Appl. 16, 61-68, (1983). R.N. Ormosadze, On C-scattered and scattered mappings, (in Russian), Soobshch. Akad. Nauk Gruzin. SSR 92, 49-52, (1978). N.K. Dodon and M.M. Coban, Theory of P-Scattered Spaces, (in Russian), Shtiintsa, Kishinev, (1979) N.K. Dodon and M.M. Coban, Properties of paracompactness type, reducible and dispersed spaces, (in Russian), Mat. Issled. 76, 14-23, (1984). L.M. Friedler, H.W. Martin and S.W. Williams, Paracompact C-scattered spaces, Pacific J. Math. 129, 277-296, (1987). T. Nogura, A compact-like space which does not have a countable cover by C-scattered closed subsets, Proc. Japan Acad. Set. A 59, 83-84, (1983). Y. Yajima, Topological games and applications, In Topics in General Topology, pp. 523-562,Elsevier,Amsterdam,(1989). F.G. Lupi£fiez, On covering properties, Math. Nachr. 141, 37-43, (1989). F.G. Lupi£fiez, On some ultraparacompact spaces, Acta Math. Hung. 56, 23-28, (1990). F.G. Lupi£fiez, Concerning ultraparacompact spaces, Quest. ~¢ Ans. Gen. Topology 11, 145-152, (1993). C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182-190, (1968). P.-M. Pu and Y.-M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76, 571-599, (1980). R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64, 446-454, (1978). F.T. Christoph, Quotient fuzzy topology and local compactness, J. Math. Anal. Appl. 57, 497-504, (1977). M.-K. Luo, Paracompactness in fuzzy topological spaces, J. Math. Anal. Appl. 130, 55-77, (1988). M.E.A. E1-Monsef, F.M. Zeyada, S.N. EI-Deeb and I.H. Hanafy, Good extensions of paracompactness, Math. Japonica 37, 195-200, (1992). C.K. Tong, Fuzzy topology: Product and quotient theorems, J. Math. Anal. Appl. 45, 512-521, (1974). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d690c2bd-762b-4bd2-a8ba-11c504ad15d5 | |
relation.isAuthorOfPublication.latestForDiscovery | d690c2bd-762b-4bd2-a8ba-11c504ad15d5 |
Download
Original bundle
1 - 1 of 1