Description and validation of the ice-sheet model Nix v1.0

dc.contributor.authorMoreno-Parada, Daniel
dc.contributor.authorRobinson, Alexander James
dc.contributor.authorMontoya Redondo, María Luisa
dc.contributor.authorÁlvarez Solas, Jorge
dc.date.accessioned2025-09-16T09:07:26Z
dc.date.available2025-09-16T09:07:26Z
dc.date.issued2025
dc.descriptionPrograma Ramón y Cajal (grant no. RYC-2016-20587)
dc.description.abstractWe present a physical description of the ice-sheet model Nix v1.0, an open-source project intended for collaborative development. Nix is a two-dimensional (flowline combined with a vertical dimension) thermomechanical model written in C and C++ that simultaneously solves for the momentum balance equations, mass conservation and temperature evolution. Nix's velocity solver includes a hierarchy of Stokes approximations: Blatter–Pattyn, depth-integrated higher order and shallow shelf. The grounding-line position is explicitly solved by a moving coordinate system that avoids further interpolations. The model can be easily forced with any external boundary conditions. Nix has been verified for standard test problems, showing versatility from regular machines (lightweight memory allocation) to high-performance computing (multi-threading capabilities). Resolutions below 0.1 km are attainable even with minimal computational resources: Nix's serial run finalizes within hours on a single CPU. Here we show results for a number of benchmark experiments from the Marine Ice Sheet Intercomparison Project (MISMIP) and assess grounding-line migration with an overdeepened bed geometry. Lastly, we further exploit the thermomechanical coupling by designing a suite of experiments where the forcing is a physical variable, unlike previously idealized forcing scenarios where ice temperatures are implicitly fixed via an ice rate factor. That is, we use atmospheric temperature and oceanic temperature anomalies to assess model hysteresis behaviour with active thermodynamics. Our results show that hysteresis in an overdeepened bed geometry is similar for atmospheric and oceanic forcings. Notably, the classical hysteresis loop is widened for both forcing scenarios (i.e. atmospheric and oceanic) if the ice sheet is thermomechanically active as a result of the internal feedback among ice temperature, stress balance and viscosity. These results show that a temperature-dependent ice viscosity provides inertia and stability to the ice sheet, regardless of the particular external forcing applied. In summary, Nix combines rapid computational capabilities with a Blatter–Pattyn stress balance fully coupled to a thermomechanical solver, not only validating against established benchmarks but also offering a powerful tool for advancing our insight into ice dynamics and grounding-line stability.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFonds de la Recherche Scientifique - FNRS
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationMoreno-Parada, D., Robinson, A., Montoya, M., and Alvarez-Solas, J.: Description and validation of the ice-sheet model Nix v1.0, Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025, 2025.
dc.identifier.doi10.5194/gmd-18-3895-2025
dc.identifier.essn1991-9603
dc.identifier.issn1991-959X
dc.identifier.officialurlhttps://doi.org/10.5194/gmd-18-3895-2025
dc.identifier.relatedurlhttps://gmd.copernicus.org/articles/18/3895/2025/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/123987
dc.issue.number12
dc.journal.titleGeoscientific Model Development
dc.language.isoeng
dc.page.final3919
dc.page.initial3895
dc.publisherCopernicus Publications
dc.relation.projectIDT.0234.24
dc.relation.projectIDRYC-2016-20587
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110714RA-100/ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC//101044247
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/820970/EU
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu550.3
dc.subject.keywordSea-level rise
dc.subject.keywordHigher-order
dc.subject.keywordStream-B
dc.subject.keywordGlacier dynamics
dc.subject.keywordWest Antarctica
dc.subject.keywordFlow
dc.subject.keywordOcean
dc.subject.keywordStability
dc.subject.keywordSensitivity
dc.subject.keywordCollapse
dc.subject.ucmGeofísica
dc.subject.unesco2507 Geofísica
dc.titleDescription and validation of the ice-sheet model Nix v1.0
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublication0e3eb380-b82c-41bd-9606-afac0ef72d63
relation.isAuthorOfPublicationc1a14f5f-4cde-482f-a744-4234a861c7f3
relation.isAuthorOfPublicationf9cc0f52-a4b1-43d7-ba7a-b7afcef0862d
relation.isAuthorOfPublication.latestForDiscovery0e3eb380-b82c-41bd-9606-afac0ef72d63

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Moreno-Parada_gmd-18-3895-2025.pdf
Size:
6.07 MB
Format:
Adobe Portable Document Format

Collections