Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Geometry of Banach spaces of trinomials

dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T09:41:37Z
dc.date.available2023-06-20T09:41:37Z
dc.date.issued2008-04-15
dc.description.abstractFor each pair of numbers m, n epsilon N with m > n, we consider the norm on R-3 given by parallel to(a, b, c)parallel to m,n = sup{vertical bar ax(m) +bx(n) +C vertical bar: x epsilon [-1, 1]} for every (a, b, c) epsilon R-3. We investigate some geometrical properties of these norms. We provide an explicit formula for parallel to center dot parallel to m,n, a full description of the extreme points of the corresponding unit balls and a parametrization and a plot of their unit spheres.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM 2006-0353
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17087
dc.identifier.doi10.1016/j.jmaa.2007.09.010
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X07011237
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50195
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final1087
dc.page.initial1069
dc.publisherAcademic Press
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordConvexity
dc.subject.keywordExtreme points
dc.subject.keywordPolynomial norms
dc.subject.keywordTrinomials
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleGeometry of Banach spaces of trinomials
dc.typejournal article
dc.volume.number340
dcterms.referencesR.M. Aron, M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001) 73–80. Y.S. Choi, S.G. Kim, The unit ball of P(2l2 2 ), Arch. Math. (Basel) 76 (1998) 472–480. Y.S. Choi, S.G. Kim, Smooth points of the unit ball of the space P(2l1), Results Math. 36 (1999) 26–33. Y.S. Choi, S.G. Kim, Exposed points of the unit balls of the spaces P(2l2p) (p = 1, 2,∞), Indian J. Pure Appl. Math. 35 (2004) 37–41. B.C. Grecu, Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces, J. Math. Anal. Appl. 293 (2) (2004) 578–588. B.C. Grecu, Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25 (4) (2002) 421–435. B.C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1<p<∞, J. Math. Anal. Appl. 273 (2) (2002) 262–282. B.C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (6) (2001) 445–454. B.C. Grecu, Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl. 246 (1) (2000) 217–229. B.C. Grecu, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, The unit ball of the complex P(3H), preprint. G. Klimek, M. Klimek, Discovering Curves and Surfaces with Maple, New York, 1997. A.G. Konheim, T.J. Rivlin, Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966) 505–507. G.A. Muñoz-Fernández, Y. Sarantopoulos, J.B. Seoane-Sepúlveda, An application of the Krein–Milman Theorem to Bernstein and Markov inequalities, preprint. S. Neuwirth, The maximum modulus of a trigonometric trinomial, arXiv:math/FA0703236v1. S. Révész, Minimization of maxima of nonnegative and positive definite cosine polynomials with prescribed first coefficients, Acta Sci. Math. (Szeged) 60 (1995) 589–608.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MunozFer14.pdf
Size:
771.83 KB
Format:
Adobe Portable Document Format

Collections