Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cohomological characterization of vector bundles on Grassmannians of lines

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorMalaspina, Francesco
dc.date.accessioned2023-06-20T00:09:00Z
dc.date.available2023-06-20T00:09:00Z
dc.date.issued2010
dc.description.abstractWe introduce a notion of regularity for coherent sheaves on Grassmannians of lines. We use this notion to prove some extension of Evans-Griffith criterion to characterize direct sums of line bundles. We also give. in the line of previous results by Costa and Miro-Roig, a cohomological characterization of exterior and symmetric powers of the universal bundles of the Grassmannian.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14754
dc.identifier.doihttp://dx.doi.org10.1016/j.jalgebra.2009.11.007
dc.identifier.issn0021-8693
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0021869309006061
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42087
dc.issue.number4
dc.journal.titleJournal of Algebra
dc.language.isoeng
dc.page.final1106
dc.page.initial1098
dc.publisherElsevier Science
dc.relation.projectIDMTM2006-04785
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordCastelnuovo-Mumford regularity
dc.subject.keywordCriterion
dc.subject.keywordQuadrics
dc.subject.keywordSpaces
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCohomological characterization of vector bundles on Grassmannians of lines
dc.typejournal article
dc.volume.number323
dcterms.references[1] E. Arrondo, B. Graña, Vector bundles on G(1, 4) without intermediate cohomology, J. Algebra 214 (1999) 128–142. [2] E. Ballico, F. Malaspina, Qregularity and an extension of the Evans–Griffiths criterion to vector bundles on quadrics, J. Pure Appl. Algebra 213 (2009) 194–202. [3] J.V. Chipalkatti, A generalization of Castelnuovo regularity to Grassmann varieties, Manuscripta Math. 102 (4) (2000) 447– 464. [4] L. Costa, R.M. Miró-Roig, Cohomological characterization of vector bundles on multiprojective spaces, J. Algebra 294 (1) (2005) 73–96, with a corrigendum in: J. Algebra 319 (3) (2008) 1336–1338. [5] L. Costa, R.M. Miró-Roig, m-blocks collections and Castelnuovo–Mumford regularity in multiprojective spaces, Nagoya Math. J. 186 (2007) 119–155. [6] E.G. Evans, P. Griffith, The syzygy problem, Ann. of Math. 114 (2) (1981) 323–333. [7] J.W. Hoffman, H.H. Wang, Castelnuovo–Mumford regularity in biprojective spaces, Adv. Geom. 4 (4) (2004) 513–536. [8] H. Knörrer, Cohen–Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987) 153–164. [9] F. Malaspina, Few splitting criteria for vector bundles, Ric. Mat. 57 (2008) 55–64. [10] D. Mumford, Lectures on Curves on an Algebraic Surface, Princeton University Press, Princeton, NJ, 1966. [11] G. Ottaviani, Some extension of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (IV) 155 (1989) 317–341.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
170.48 KB
Format:
Adobe Portable Document Format

Collections