Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Cohomological characterization of vector bundles on Grassmannians of lines

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorMalaspina, Francesco
dc.date.accessioned2023-06-20T00:09:00Z
dc.date.available2023-06-20T00:09:00Z
dc.date.issued2010
dc.description.abstractWe introduce a notion of regularity for coherent sheaves on Grassmannians of lines. We use this notion to prove some extension of Evans-Griffith criterion to characterize direct sums of line bundles. We also give. in the line of previous results by Costa and Miro-Roig, a cohomological characterization of exterior and symmetric powers of the universal bundles of the Grassmannian.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14754
dc.identifier.doihttp://dx.doi.org10.1016/j.jalgebra.2009.11.007
dc.identifier.issn0021-8693
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0021869309006061
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42087
dc.issue.number4
dc.journal.titleJournal of Algebra
dc.language.isoeng
dc.page.final1106
dc.page.initial1098
dc.publisherElsevier Science
dc.relation.projectIDMTM2006-04785
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordCastelnuovo-Mumford regularity
dc.subject.keywordCriterion
dc.subject.keywordQuadrics
dc.subject.keywordSpaces
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCohomological characterization of vector bundles on Grassmannians of lines
dc.typejournal article
dc.volume.number323
dcterms.references[1] E. Arrondo, B. Graña, Vector bundles on G(1, 4) without intermediate cohomology, J. Algebra 214 (1999) 128–142. [2] E. Ballico, F. Malaspina, Qregularity and an extension of the Evans–Griffiths criterion to vector bundles on quadrics, J. Pure Appl. Algebra 213 (2009) 194–202. [3] J.V. Chipalkatti, A generalization of Castelnuovo regularity to Grassmann varieties, Manuscripta Math. 102 (4) (2000) 447– 464. [4] L. Costa, R.M. Miró-Roig, Cohomological characterization of vector bundles on multiprojective spaces, J. Algebra 294 (1) (2005) 73–96, with a corrigendum in: J. Algebra 319 (3) (2008) 1336–1338. [5] L. Costa, R.M. Miró-Roig, m-blocks collections and Castelnuovo–Mumford regularity in multiprojective spaces, Nagoya Math. J. 186 (2007) 119–155. [6] E.G. Evans, P. Griffith, The syzygy problem, Ann. of Math. 114 (2) (1981) 323–333. [7] J.W. Hoffman, H.H. Wang, Castelnuovo–Mumford regularity in biprojective spaces, Adv. Geom. 4 (4) (2004) 513–536. [8] H. Knörrer, Cohen–Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987) 153–164. [9] F. Malaspina, Few splitting criteria for vector bundles, Ric. Mat. 57 (2008) 55–64. [10] D. Mumford, Lectures on Curves on an Algebraic Surface, Princeton University Press, Princeton, NJ, 1966. [11] G. Ottaviani, Some extension of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (IV) 155 (1989) 317–341.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
170.48 KB
Format:
Adobe Portable Document Format

Collections