Cohomological characterization of vector bundles on Grassmannians of lines
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.contributor.author | Malaspina, Francesco | |
dc.date.accessioned | 2023-06-20T00:09:00Z | |
dc.date.available | 2023-06-20T00:09:00Z | |
dc.date.issued | 2010 | |
dc.description.abstract | We introduce a notion of regularity for coherent sheaves on Grassmannians of lines. We use this notion to prove some extension of Evans-Griffith criterion to characterize direct sums of line bundles. We also give. in the line of previous results by Costa and Miro-Roig, a cohomological characterization of exterior and symmetric powers of the universal bundles of the Grassmannian. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14754 | |
dc.identifier.doi | http://dx.doi.org10.1016/j.jalgebra.2009.11.007 | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0021869309006061 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42087 | |
dc.issue.number | 4 | |
dc.journal.title | Journal of Algebra | |
dc.language.iso | eng | |
dc.page.final | 1106 | |
dc.page.initial | 1098 | |
dc.publisher | Elsevier Science | |
dc.relation.projectID | MTM2006-04785 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | Castelnuovo-Mumford regularity | |
dc.subject.keyword | Criterion | |
dc.subject.keyword | Quadrics | |
dc.subject.keyword | Spaces | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Cohomological characterization of vector bundles on Grassmannians of lines | |
dc.type | journal article | |
dc.volume.number | 323 | |
dcterms.references | [1] E. Arrondo, B. Graña, Vector bundles on G(1, 4) without intermediate cohomology, J. Algebra 214 (1999) 128–142. [2] E. Ballico, F. Malaspina, Qregularity and an extension of the Evans–Griffiths criterion to vector bundles on quadrics, J. Pure Appl. Algebra 213 (2009) 194–202. [3] J.V. Chipalkatti, A generalization of Castelnuovo regularity to Grassmann varieties, Manuscripta Math. 102 (4) (2000) 447– 464. [4] L. Costa, R.M. Miró-Roig, Cohomological characterization of vector bundles on multiprojective spaces, J. Algebra 294 (1) (2005) 73–96, with a corrigendum in: J. Algebra 319 (3) (2008) 1336–1338. [5] L. Costa, R.M. Miró-Roig, m-blocks collections and Castelnuovo–Mumford regularity in multiprojective spaces, Nagoya Math. J. 186 (2007) 119–155. [6] E.G. Evans, P. Griffith, The syzygy problem, Ann. of Math. 114 (2) (1981) 323–333. [7] J.W. Hoffman, H.H. Wang, Castelnuovo–Mumford regularity in biprojective spaces, Adv. Geom. 4 (4) (2004) 513–536. [8] H. Knörrer, Cohen–Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987) 153–164. [9] F. Malaspina, Few splitting criteria for vector bundles, Ric. Mat. 57 (2008) 55–64. [10] D. Mumford, Lectures on Curves on an Algebraic Surface, Princeton University Press, Princeton, NJ, 1966. [11] G. Ottaviani, Some extension of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (IV) 155 (1989) 317–341. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1