Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Robust SVM Classification with l0-Norm Feature Selection

dc.contributor.authorCarrasco, Miguel
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorLópez, Julio
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2024-10-16T14:20:03Z
dc.date.available2024-10-16T14:20:03Z
dc.date.issued2024
dc.description.abstractIn this article, we introduce a robust classification model designed for feature selection. Support vector machine (SVM) models continue to play a crucial role in binary classification, particularly with tabular data. Their robust variants are essential for developing classifiers that remain stable despite shifts in data distribution. Additionally, sparse classifiers are highly desirable, as they offer improved performance in classification tasks and help reduce overfitting, especially when the number of features exceeds the number of samples. In this context, penalty methods for feature selection are fundamental to the development of sparse optimization models. Despite its inherent nonlinearity and nonconvexity, the l0-norm remains a popular choice for this task and has been effectively applied in diverse fields, such as pattern recognition and signal processing. Our objective is to evaluate the performance of two classification approaches that integrate robust classification in SVM-type models with embedded feature selection. We propose a diagonal algorithm for numerically solving these optimization models, which we validate through numerical tests on benchmark datasets. The results are compared to those obtained using models based on l2-norm regularization.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinistry of Science and Innovation (Spain)
dc.description.statussubmitted
dc.identifier.urihttps://hdl.handle.net/20.500.14352/109030
dc.language.isoeng
dc.relation.projectIDPID2019-106337GB-I00
dc.relation.projectIDPID2023-146754NB-I00
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordFeature Selection
dc.subject.keywordRobust optimization
dc.subject.keywordSecond-Order Cone Programming
dc.subject.keywordSupport Vector Machines
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleRobust SVM Classification with l0-Norm Feature Selection
dc.typejournal article
dc.type.hasVersionAO
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article_L0-V1.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format

Collections