Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelling of a surface marine vehicle with kernel ridge regression confidence machine

dc.contributor.authorMoreno Salinas, David
dc.contributor.authorMoreno Salinas, Raúl
dc.contributor.authorPereira, Augusto
dc.contributor.authorAranda, Joaquín
dc.contributor.authorCruz García, Jesús Manuel de la
dc.date.accessioned2023-06-17T13:21:51Z
dc.date.available2023-06-17T13:21:51Z
dc.date.issued2019-03
dc.description©2019 Elsevier B.V. We express our appreciation to the late Prof. Jesus Manuel de la Cruz, whose contribution to this work was of great significance. The work of D. Moreno-Salinas was supported by “Ministerio de Economia y Competitividad” under project CICYT DPI2014-55932-C2-2-R. The work of R. Moreno has been supported by Science Foundation Ireland under Grant No. SFI/12/RC/2289.
dc.description.abstractThis paper describes the use of Kernel Ridge Regression (KRR) and Kernel Ridge Regression Confidence Machine (KRRCM) for black box identification of a surface marine vehicle. Data for training and test have been obtained from several manoeuvres typically used for marine system identification. Thus, a 20/20 degrees Zig-Zag, a 10/10 degrees Zig-Zag, and different evolution circles have been employed for the computation and validation of the model. Results show that the application of conformal prediction provides an accurate model that reproduces with large accuracy the actual behaviour of the ship with confidence margins that ensure that the model response is within these margins, making it a suitable tool for system identification.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economia y Competitividad (MINECO)
dc.description.sponsorshipScience Foundation Ireland
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55046
dc.identifier.doi10.1016/j.asoc.2018.12.002
dc.identifier.issn1568-4946
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.asoc.2018.12.002
dc.identifier.relatedurlhttps://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13247
dc.journal.titleApplied soft computing
dc.language.isoeng
dc.page.final250
dc.page.initial237
dc.publisherElsevier Science BV
dc.relation.projectIDCICYT DPI2014-55932-C2-2-R.
dc.relation.projectIDSFI/12/RC/2289
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordSystem-identification
dc.subject.keywordShip
dc.subject.keywordSystem identification
dc.subject.keywordMarine systems
dc.subject.keywordKernel ridge regression (KRR)
dc.subject.keywordConformal predictors (CP)
dc.subject.keywordKernel ridge regression confidence machine (KRRCM)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleModelling of a surface marine vehicle with kernel ridge regression confidence machine
dc.typejournal article
dc.volume.number76
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia73postprint+EMB_01_mar_2020.pdf
Size:
6.09 MB
Format:
Adobe Portable Document Format

Collections