Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Complete classification of rational solutions of A(2n)-Painleve systems.

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorGrandati, Yves
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-16T14:15:53Z
dc.date.available2023-06-16T14:15:53Z
dc.date.issued2021-07-16
dc.description© 2021 Academic Press Inc Elsevier Science. The research of DGU has been supported in part by the Spanish MICINN under grants PGC2018-096504-B-C33 and RTI2018-100754-B-I00, the European Union under the 2014-2020 ERDF Operational Programme and the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia (project FEDER-UCA18-108393). We would like to thank three anonymous referees for their valuable comments that helped to improve the final version of this manuscript.
dc.description.abstractWe provide a complete classification and an explicit representation of rational solutions to the fourth Painleve equation P-IV and its higher order generalizations known as the A(2n)-Painleve or Noumi-Yamada systems. The construction of solutions makes use of the theory of cyclic dressing chains of Schrodinger operators. Studying the local expansions of the solutions around their singularities we find that some coefficients in their Laurent expansion must vanish, which express precisely the conditions of trivial monodromy of the associated potentials. The characterization of trivial monodromy potentials with quadratic growth implies that all rational solutions can be expressed as Wronskian determinants of suitably chosen sequences of Hermite polynomials. The main classification result states that every rational solution to the A(2n)-Painleve system corresponds to a cycle of Maya diagrams, which can be indexed by an oddly coloured integer sequence. Finally, we establish the link with the standard approach to building rational solutions, based on applying Backlund transformations on seed solutions, by providing a representation for the symmetry group action on coloured sequences and Maya cycles. (C) 2021 Elsevier Inc. All rights reserved.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipJunta de Andalucia/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67707
dc.identifier.doi10.1016/j.aim.2021.107770
dc.identifier.issn0001-8708
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.aim.2021.107770
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4422
dc.journal.titleAdvances in mathematics
dc.language.isoeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.projectID(PGC2018-096504-B-C33; RTI2018-100754-B-I00)
dc.relation.projectIDFEDER-UCA18-108393
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keyword4th Painleve equation
dc.subject.keywordUniversal characters
dc.subject.keywordSpecial polynomials
dc.subject.keywordChains
dc.subject.keywordIV
dc.subject.keywordHierarchy
dc.subject.keywordPII
dc.subject.keyword2nd.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleComplete classification of rational solutions of A(2n)-Painleve systems.
dc.typejournal article
dc.volume.number385
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate46preprint.pdf
Size:
508.14 KB
Format:
Adobe Portable Document Format

Collections