Aviso: Por razones de mantenimiento y mejora de Docta Complutense, esta herramienta no está funcionando con normalidad; se pueden hacer nuevos depósitos, pero su revisión y aprobación tardará más de lo habitual por problemas en el flujo de trabajo. El lunes 31 de marzo entre las 9 y las 12 horas aproximadamente, Docta no estará operativa. Lamentamos las molestias.
 

Eco-RETINA: a green flexible algorithm for model building

dc.contributor.authorCapilla, Javier
dc.contributor.authorAlcaraz, Alba
dc.contributor.authorValarezo Unda, Ángel Eduardo
dc.contributor.authorGarcía Hiernaux, Alfredo Alejandro
dc.contributor.authorPérez Amaral, Teodosio
dc.date.accessioned2025-02-05T13:01:59Z
dc.date.available2025-02-05T13:01:59Z
dc.date.issued2025-02-03
dc.descriptionThe authors acknowledge the support of the HORIZON Research and Innovation Program of the European Union, under grant agreement No 101120657, project ENFIELD (European Lighthouse to Manifest Trustworthy and Green AI).
dc.description.abstractEco-RETINA is an innovative and eco-friendly algorithm explicitly designed for out-of-sample prediction. Functioning as a regression-based flexible approximator, it is linear in parameters but nonlinear in inputs, employing a selective model search to optimize performance. The algorithm adeptly manages multicollinearity while emphasizing speed, accuracy, and environmental sustainability. Its modular and transparent structure facilitates easy interpretation and modification, making it an invaluable tool for researchers in developing explicit models for out-of-sample forecasting. The algorithm generates outputs such as a list of relevant transformed inputs, coefficients, standard deviations, and confidence intervals, enhancing its interpretability.
dc.description.agreementHORIZON Research
dc.description.agreementInnovation Program of the European Union
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.issn2341-2356
dc.identifier.officialurlhttps://www.ucm.es/icae/working-papers
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117836
dc.issue.number01
dc.language.isoeng
dc.page.total30
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICEI)
dc.relation.projectIDinfo:eu-repo/grantAgreement///101120657/EU/European Lighthouse to Manifest Trustworthy and Green AI/ENFIELD
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.jelC14
dc.subject.jelC45
dc.subject.jelC51
dc.subject.jelC63
dc.subject.keywordEco-RETINA
dc.subject.keywordPredicción fuera de la muestra.
dc.subject.keywordAlgoritmo
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleEco-RETINA: a green flexible algorithm for model building
dc.typeworking paper
dc.type.hasVersionAM
dc.volume.number2025
dspace.entity.typePublication
relation.isAuthorOfPublication50787fdf-ed4d-44ee-bb06-539db3d927e8
relation.isAuthorOfPublicationda39222d-0086-4c3a-9421-032f49579d94
relation.isAuthorOfPublication14ac85fa-418f-40ee-b712-4075cd494574
relation.isAuthorOfPublication.latestForDiscovery50787fdf-ed4d-44ee-bb06-539db3d927e8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2501.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format