Braid monodromy and topology of plane curves.
dc.contributor.author | Artal Bartolo, Enrique | |
dc.contributor.author | Carmona Ruber, Jorge | |
dc.contributor.author | Cogolludo Agustín, José Ignacio | |
dc.date.accessioned | 2023-06-20T10:36:49Z | |
dc.date.available | 2023-06-20T10:36:49Z | |
dc.date.issued | 2003 | |
dc.description.abstract | In this paper we prove that braid monodromy of an affine plane curve determines the topology of a related projective plane curve. | |
dc.description.department | Sección Deptal. de Sistemas Informáticos y Computación | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Direccion General de Enseñanza Superior | |
dc.description.sponsorship | Direccion General de Ciencia y Tecnologıa | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22479 | |
dc.identifier.issn | 0012-7094 | |
dc.identifier.officialurl | http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.dmj/1082744648 | |
dc.identifier.relatedurl | http://projecteuclid.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50773 | |
dc.issue.number | 2 | |
dc.journal.title | Duke mathematical journal | |
dc.language.iso | eng | |
dc.page.final | 278 | |
dc.page.initial | 261 | |
dc.publisher | DUKE UNIV PRESS | |
dc.relation.projectID | PB1997-0284-C02-02 | |
dc.relation.projectID | BFM-1488-CO2-02. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Braid monodromy and topology of plane curves. | |
dc.type | journal article | |
dc.volume.number | 118 | |
dcterms.references | E. ARTAL, J. CARMONA, and J. I. COGOLLUDO, Effective invariants of braid monodromy, preprint, 2001,http://www.unizar.es/galdeano/preprints/2002/preprint18.pdf E. ARTIN, Theory of braids, Ann. of Math. (2) 48 (1947),101 – 126. J. S. BIRMAN, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82,Princeton Univ. Press, Princeton, 1974. J. CARMONA, Monodromıa de trenzas de curvas algebraicas planas, thesis in preparation, University of Zaragoza,Spain. O. CHISINI, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist.Lombardo, Rend., II. Ser. 66 (1933), 1141 – 1155. E. R. VAN KAMPEN, On the fundamental group of an algebraic curve, Amer. J. Math.55 (1933), 255 – 260. V. S. KULIKOV and M. TEICHER, Braid monodromy factorizations and diffeomorphism types (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 64, no. 2 (2000), 89 – 120. A. LIBGOBER, On the homotopy type of the complement to plane algebraic curves, J.Reine Angew. Math. 367 (1986),103 – 114. A. LIBGOBER,Invariants of plane algebraic curves via representations of the braid groups,Invent. Math. 95 (1989), 25 – 30. A. LIBGOBER,“Characteristic varieties of algebraic curves” in Applications of Algebraic Geometry to Coding Theory,Physics and Computation (Eilat, Israel, 2001), ed.C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher, NATO Sci. Ser. II Math.Phys. Chem. 36, Kluwer, Dordrecht, 2001, 215 – 254. B. G. MOISHEZON, “Stable branch curves and braid monodromies” in Algebraic Geometry (Chicago, 1980), Lecture Notes in Math. 862, Springer, Berlin, 1981,107 – 192. B. MOISHEZON and M. TEICHER, “Braid group technique in complex geometry, I: Line arrangements in CP2” in Braids (Santa Cruz, Calif., 1986), Contemp. Math. 78,Amer. Math. Soc., Providence, 1988, 425 – 455. O. ZARISKI, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305 – 328. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | faea3c31-07a3-433c-96f8-f1bfae9110a1 | |
relation.isAuthorOfPublication.latestForDiscovery | faea3c31-07a3-433c-96f8-f1bfae9110a1 |
Download
Original bundle
1 - 1 of 1