Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Braid monodromy and topology of plane curves.

dc.contributor.authorArtal Bartolo, Enrique
dc.contributor.authorCarmona Ruber, Jorge
dc.contributor.authorCogolludo Agustín, José Ignacio
dc.date.accessioned2023-06-20T10:36:49Z
dc.date.available2023-06-20T10:36:49Z
dc.date.issued2003
dc.description.abstractIn this paper we prove that braid monodromy of an affine plane curve determines the topology of a related projective plane curve.
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDireccion General de Enseñanza Superior
dc.description.sponsorshipDireccion General de Ciencia y Tecnologıa
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22479
dc.identifier.issn0012-7094
dc.identifier.officialurlhttp://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.dmj/1082744648
dc.identifier.relatedurlhttp://projecteuclid.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50773
dc.issue.number2
dc.journal.titleDuke mathematical journal
dc.language.isoeng
dc.page.final278
dc.page.initial261
dc.publisherDUKE UNIV PRESS
dc.relation.projectIDPB1997-0284-C02-02
dc.relation.projectIDBFM-1488-CO2-02.
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleBraid monodromy and topology of plane curves.
dc.typejournal article
dc.volume.number118
dcterms.referencesE. ARTAL, J. CARMONA, and J. I. COGOLLUDO, Effective invariants of braid monodromy, preprint, 2001,http://www.unizar.es/galdeano/preprints/2002/preprint18.pdf E. ARTIN, Theory of braids, Ann. of Math. (2) 48 (1947),101 – 126. J. S. BIRMAN, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82,Princeton Univ. Press, Princeton, 1974. J. CARMONA, Monodromıa de trenzas de curvas algebraicas planas, thesis in preparation, University of Zaragoza,Spain. O. CHISINI, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist.Lombardo, Rend., II. Ser. 66 (1933), 1141 – 1155. E. R. VAN KAMPEN, On the fundamental group of an algebraic curve, Amer. J. Math.55 (1933), 255 – 260. V. S. KULIKOV and M. TEICHER, Braid monodromy factorizations and diffeomorphism types (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 64, no. 2 (2000), 89 – 120. A. LIBGOBER, On the homotopy type of the complement to plane algebraic curves, J.Reine Angew. Math. 367 (1986),103 – 114. A. LIBGOBER,Invariants of plane algebraic curves via representations of the braid groups,Invent. Math. 95 (1989), 25 – 30. A. LIBGOBER,“Characteristic varieties of algebraic curves” in Applications of Algebraic Geometry to Coding Theory,Physics and Computation (Eilat, Israel, 2001), ed.C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher, NATO Sci. Ser. II Math.Phys. Chem. 36, Kluwer, Dordrecht, 2001, 215 – 254. B. G. MOISHEZON, “Stable branch curves and braid monodromies” in Algebraic Geometry (Chicago, 1980), Lecture Notes in Math. 862, Springer, Berlin, 1981,107 – 192. B. MOISHEZON and M. TEICHER, “Braid group technique in complex geometry, I: Line arrangements in CP2” in Braids (Santa Cruz, Calif., 1986), Contemp. Math. 78,Amer. Math. Soc., Providence, 1988, 425 – 455. O. ZARISKI, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305 – 328.
dspace.entity.typePublication
relation.isAuthorOfPublicationfaea3c31-07a3-433c-96f8-f1bfae9110a1
relation.isAuthorOfPublication.latestForDiscoveryfaea3c31-07a3-433c-96f8-f1bfae9110a1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carmona05.pdf
Size:
108.04 KB
Format:
Adobe Portable Document Format

Collections