Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Constrained optimization of sequentially generated entangled multiqubit states

dc.contributor.authorSaberi, Hamed
dc.contributor.authorWeichselbaum, Andreas
dc.contributor.authorLamata, Lucas
dc.contributor.authorPérez García, David
dc.contributor.authorDelft, Jan von
dc.contributor.authorSolano, Enrique
dc.date.accessioned2023-06-20T09:44:47Z
dc.date.available2023-06-20T09:44:47Z
dc.date.issued2009
dc.description.abstractWe demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give paradigmatic examples that may be of interest for theoretical and experimental developments.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17711
dc.identifier.doi10.1103/PhysRevA.80.022334
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://link.aps.org/doi/10.1103/PhysRevA.80.022334
dc.identifier.relatedurlhttp://www.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50290
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final1
dc.page.initial022334
dc.publisherAmerican Physical Society
dc.relation.projectID(FIS( 2008-05705/FIS)
dc.relation.projectID(MTM2005-00082)
dc.relation.projectID(CCG07-UCM/ESP-2797)
dc.relation.projectIDEU EuroSQIP project
dc.relation.projectIDUPV-EHU Grant Nº GIU 07/40
dc.rights.accessRightsopen access
dc.subject.cdu530.145
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleConstrained optimization of sequentially generated entangled multiqubit states
dc.typejournal article
dc.volume.number80
dcterms.referencesM. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000). C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf, Phys. Rev. Lett. 95, 110503 (2005). C. Schön, K. Hammerer, M. M. Wolf, J. I. Cirac, and E. Solano, Phys. Rev. A 75, 032311 (2007). D. Pérez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum Inf. Comput. 7, 401 (2007). M. Fannes, B. Nachtergaele, and R. F. Werner, Commun. Math. Phys. 144, 443 (1992) [INSPIRE]. S. R. White, Phys. Rev. Lett. 69, 2863 (1992) [MEDLINE]; U. S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995) [MEDLINE]. H. R. Krishna-Murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980). H. Saberi, A. Weichselbaum, and J. von Delft, Phys. Rev. B 78, 035124 (2008). D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989). W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000). R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001) [CAS]. J.-W. Pan et al., Nature (London) 403, 515 (2000). D. Leibfried et al., Nature (London) 438, 639 (2005) [CAS]. H. Häffner et al., Nature (London) 438, 643 (2005). A. Rauschenbeutel et al., Science 288, 2024 (2000) [CAS]. N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98, 063604 (2007). N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Guhne, R. Ursin, and H. Weinfurter, Phys. Rev. Lett. 95, 210502 (2005). D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Athena Scientific, Belmont, MA, 1996). H. C. Andrews and C. L. Patterson, IEEE Trans. Commun. 24, 425 (1976). G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, MD, 1996). R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, England, 1991). F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004) [CAS]. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). K. R. Brown, J. Vala, and K. B. Whaley, Phys. Rev. A 67, 012309 (2003). See, for example, J. Zhang and K. B. Whaley, Phys. Rev. A 71, 052317 (2005), and references therein. T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J. Glaser, Phys. Rev. A 72, 042331 (2005). N. Timoney, V. Elman, W. Neuhauser, and C. Wunderlich, Phys. Rev. A 77, 052334 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PerezGarcia16.pdf
Size:
155.42 KB
Format:
Adobe Portable Document Format

Collections