Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data

dc.contributor.authorKwan, Chiman
dc.contributor.authorGribben, David
dc.contributor.authorAyhan, Bulent
dc.contributor.authorBernabé García, Sergio
dc.contributor.authorPlaza, Antonio
dc.contributor.authorSelva, Massimo
dc.date.accessioned2023-06-17T09:12:51Z
dc.date.available2023-06-17T09:12:51Z
dc.date.issued2020-04-28
dc.description.abstractHyperspectral (HS) data have found a wide range of applications in recent years. Researchers observed that more spectral information helps land cover classification performance in many cases. However, in some practical applications, HS data may not be available, due to cost, data storage, or bandwidth issues. Instead, users may only have RGB and near infrared (NIR) bands available for land cover classification. Sometimes, light detection and ranging (LiDAR) data may also be available to assist land cover classification. A natural research problem is to investigate how well land cover classification can be achieved under the aforementioned data constraints. In this paper, we investigate the performance of land cover classification while only using four bands (RGB+NIR) or five bands (RGB+NIR+LiDAR). A number of algorithms have been applied to a well-known dataset (2013 IEEE Geoscience and Remote Sensing Society Data Fusion Contest). One key observation is that some algorithms can achieve better land cover classification performance by using only four bands as compared to that of using all 144 bands in the original hyperspectral data with the help of synthetic bands generated by Extended Multi-attribute Profiles (EMAP). Moreover, LiDAR data do improve the land cover classification performance even further.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUS Department of Energy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67636
dc.identifier.doi10.3390/rs12091392
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs12091392
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8407
dc.issue.number9
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial1392
dc.publisherMDPI
dc.relation.projectID(# DE-SC0019936)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordland cover classification
dc.subject.keywordhyperspectral
dc.subject.keywordEMAP
dc.subject.keywordsynthetic bands
dc.subject.keywordLiDAR
dc.subject.keyworddata fusion
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleImproving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication092818da-fd6a-4d1f-ba39-7e6098841e99
relation.isAuthorOfPublication.latestForDiscovery092818da-fd6a-4d1f-ba39-7e6098841e99

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Improving_Land_Cover_Classification_Using_Extended.pdf
Size:
31.49 MB
Format:
Adobe Portable Document Format

Collections