Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial and continuous dependence estimates in linear viscoelasticity

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorQuintanilla, R.
dc.date.accessioned2023-06-20T16:52:58Z
dc.date.available2023-06-20T16:52:58Z
dc.date.issued2002
dc.description.abstractIn this paper we consider the problem determined by the anti-plane shear dynamic deformations for the linear theory of viscoelasticity. First, we prove existence of solutions of the problem determined in a semi-infinite strip. Then, we show that the rate of decay of the end effects in this problem is faster than that known for the Laplace equation. In the last section, we study the influence of the mass density on the decay of end effects.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain).
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15495
dc.identifier.doi10.1016/S0022-247X(02)00200-7
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X02002007
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57319
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final16
dc.page.initial1
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.projectIDREN2000-0766
dc.relation.projectIDBFM2000-0809
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordheat-conduction
dc.subject.keyworddecay
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSpatial and continuous dependence estimates in linear viscoelasticity
dc.typejournal article
dc.volume.number273
dcterms.referencesM. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965. S.N. Antonsev, J.I. Diaz, S.I. Shmarev, Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics, Birkhäuser, Boston, 2002. H. Brezis, Operateurs Maximaux Monotones, North-Holland, Amsterdam, 1973. H. Engler, Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity, Math. Z. 202 (1989) 251–259. G. Galdi, S. Rionero, Weighted Energy Methods in Fluid Dynamics and Elasticity, in: Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. C.O. Horgan, Anti-plane shear deformations in linear and nonlinear solid mechanics, SIAM Rev. 37 (1995) 53–81. C.O. Horgan, L.E. Payne, L.T. Wheeler, Spatial decay estimates in transient heat conduction, Quart. Appl. Math. 42 (1984) 119–127. M.J. Leitman, G.M.C. Fisher, The linear theory of viscoelasticity, in: S. Flugge (Ed.), Handbuch der Physik VIa/3, Springer-Verlag, Berlin, 1997, pp. 1–123. H.A. Levine, R. Quintanilla, Some remarks on Saint-Venant's principle, Math. Methods Appl. Sci. 11 (1989) 71–77. C. Lin, L.E. Payne, The influence of domain and diffusivity perturbations on the decay of end effects in heat conduction, SIAM J. Math. Anal. 25 (1994) 1241–1258. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. R. Quintanilla, Phragmen--Lindelöf alternative for linear equations of the anti-plane shear dynamic problem in viscoelasticity, Dynamics Contin. Discrete Impulsive Systems 2 (1996) 423–436. M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical Problems in Viscoelasticity, Longman Scientific and Technical, New York, 1987. P. Rybka, Dynamical modelling of phase transitions by means viscoelasticity in many dimensions, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992) 101–138. I.S. Sokolnikoff, R.M. Redheffer, Mathematics of Physics and Modern Engineering, 2nd ed., McGraw–Hill, New York, 1966. B. Straughan, Instability, Nonexistence and Weighted Energy Methods in Fluid Dynamics and Related Theories, in: Pitman Research Notes in Mathematics, Vol. 74, Pitman, London, 1982.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
66.pdf
Size:
109.15 KB
Format:
Adobe Portable Document Format

Collections