Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins

dc.contributor.authorYang, Zongfan
dc.contributor.authorTwidale, Rebecca
dc.contributor.authorGervasoni, Silvia
dc.contributor.authorSuardíaz Delrío, Reynier
dc.contributor.authorColenso, Charlotte
dc.contributor.authorLang, Eric
dc.contributor.authorSpencer, James
dc.contributor.authorMulholland, Adrian
dc.date.accessioned2024-01-11T08:03:19Z
dc.date.available2024-01-11T08:03:19Z
dc.date.issued2021
dc.description.abstractZinc metalloproteins are ubiquitous, with protein zinc centers of structural and functional importance, involved in interactions with ligands and substrates and often of pharmacological interest. Biomolecular simulations are increasingly prominent in investigations of protein structure, dynamics, ligand interactions, and catalysis, but zinc poses a particular challenge, in part because of its versatile, flexible coordination. A computational workflow generating reliable models of ligand complexes of biological zinc centers would find broad application. Here, we evaluate the ability of alternative treatments, using (nonbonded) molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) at semiempirical (DFTB3) and density functional theory (DFT) levels of theory, to describe the zinc centers of ligand complexes of six metalloenzyme systems differing in coordination geometries, zinc stoichiometries (mono- and dinuclear), and the nature of interacting groups (specifically the presence of zinc–sulfur interactions). MM molecular dynamics (MD) simulations can overfavor octahedral geometries, introducing additional water molecules to the zinc coordination shell, but this can be rectified by subsequent semiempirical (DFTB3) QM/MM MD simulations. B3LYP/MM geometry optimization further improved the accuracy of the description of coordination distances, with the overall effectiveness of the approach depending upon factors, including the presence of zinc–sulfur interactions that are less well described by semiempirical methods. We describe a workflow comprising QM/MM MD using DFTB3 followed by QM/MM geometry optimization using DFT (e.g., B3LYP) that well describes our set of zinc metalloenzyme complexes and is likely to be suitable for creating accurate models of zinc protein complexes when structural information is more limited.en
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Reino Unido)
dc.description.sponsorshipBiotechnology and BiologicalSciences Research Council (Reino Unido)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorship National Institutes of Health
dc.description.sponsorshipChina Scholarship Council
dc.description.sponsorshipRoyal Society of Chemistry
dc.description.statuspub
dc.identifier.citationYang, Zongfan, et al. «Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins». Journal of Chemical Information and Modeling, vol. 61, n.o 11, noviembre de 2021, pp. 5658-72. https://doi.org/10.1021/acs.jcim.1c01109.
dc.identifier.doi10.1021/acs.jcim.1c01109
dc.identifier.essn1549-960X
dc.identifier.issn1549-9596
dc.identifier.officialurlhttps://doi.org/10.1021/acs.jcim.1c01109
dc.identifier.relatedurlhttps://pubs.acs.org/doi/10.1021/acs.jcim.1c01109
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92416
dc.issue.number11
dc.journal.titleJournal of Chemical Information and Modeling
dc.language.isoeng
dc.page.final5672
dc.page.initial5658
dc.publisherAmerican Chemical Society
dc.relation.projectIDBB/J014400/1
dc.relation.projectIDEP/M022609/1
dc.relation.projectIDEP/M013219/1
dc.relation.projectIDBB/M000354/1
dc.relation.projectIDBB/L01386X/1
dc.relation.projectIDR19-3409
dc.relation.projectIDR20-6912
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113147GA-I00/ES/DINAMICA ADIABATICA Y NO ADIABATICA DE REACCIONES Y CRUCES INTERSISTEMA EN SISTEMAS BIOLOGICOS/
dc.relation.projectIDR01AI100560
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu544
dc.subject.keywordComplexation Quantum theory
dc.subject.keywordComputation theory
dc.subject.keywordDensity functional theory
dc.subject.keywordGeometry
dc.subject.keywordLigands
dc.subject.keywordMetals
dc.subject.keywordMolecular dynamics
dc.subject.keywordMolecules
dc.subject.keywordProteins
dc.subject.keywordSulfur
dc.subject.keywordZinc compounds
dc.subject.ucmQuímica
dc.subject.unesco23 Química
dc.titleMultiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteinsen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number61
dspace.entity.typePublication
relation.isAuthorOfPublication8b0c8e63-584d-4205-a5aa-81107b9bd474
relation.isAuthorOfPublication.latestForDiscovery8b0c8e63-584d-4205-a5aa-81107b9bd474

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiscale_workflow.pdf
Size:
5.93 MB
Format:
Adobe Portable Document Format

Collections