Geometric inequivalence of metric and Palatini formulations of General Relativity

dc.contributor.authorBejarano, Cecilia
dc.contributor.authorDelhom, Adria
dc.contributor.authorJimenez Cano, Alejandro
dc.contributor.authorOlmo, Gonzalo J.
dc.contributor.authorRubiera García, Diego
dc.date.accessioned2023-06-16T15:17:07Z
dc.date.available2023-06-16T15:17:07Z
dc.date.issued2020-03-10
dc.description© 2020 The Author(s). C. B. is funded by the National Scientific and Technical Research Council (CONICET). AD and AJC are supported by a PhD contract of the program FPU 2015 (Spanish Ministry of Economy and Competitiveness) with references FPU15/05406 and FPU15/02864, respectively. GJO is funded by the Ramon y Cajal contract RYC-2013-13019 (Spain). DRG is funded by the Atraccion de Talento Investigadorprogramme of the Comunidad de Madrid No. 2018-T1/TIC-10431, and acknowledges support from the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) research grants Nos. PTDC/FIS-OUT/29048/2017 and PTDC/FIS-PAR/31938/2017. Thiswork is supported by the Spanish projects FIS2017-84440-C2-1-P, FIS2014-57387-C3-1-P (MINECO/FEDER, EU) and i-LINK1215 (CSIC), the project H2020-MSCA-RISE-2017 Grant FunFiCO-777740, the project SEJI/2017/042 (Generalitat Valenciana), the Consolider Program CPANPHY-1205388, and the Severo Ochoa grant SEV2014-0398 (Spain). This article is based upon work from COST Action CA15117, supported by COST (European Cooperation in Science and Technology).
dc.description.abstractProjective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta mu nu R alpha beta mu nu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection. (C) 2020 The Author(s). Published by Elsevier B.V.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipGeneralitat Valenciana
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas
dc.description.sponsorshipPrograma Ramón y Cajal
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (FCT)
dc.description.sponsorshipCentro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60041
dc.identifier.doi10.1016/j.physletb.2020.135275
dc.identifier.issn0370-2693
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physletb.2020.135275
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6176
dc.journal.titlePhysics letters B
dc.language.isoeng
dc.publisherElsevier Science BV
dc.relation.projectIDFunFiCO (777740) ; CA15117
dc.relation.projectID(FIS2017-84440-C2-1-P; FIS2014-57387-C3-1-P)
dc.relation.projectID(FPU15/05406; FPU15/02864)
dc.relation.projectID2018-T1/TIC-10431
dc.relation.projectIDSEJI/2017/042
dc.relation.projectIDi-LINK1215
dc.relation.projectIDRYC-2013-13019
dc.relation.projectIDSEV2014-0398
dc.relation.projectID(PTDC/FIS-OUT/29048/2017; PTDC/FIS-PAR/31938/2017)
dc.relation.projectIDCPANPHY-1205388
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordGravitational collapse
dc.subject.keywordEinstein hilbert
dc.subject.keywordEquivalence
dc.subject.keywordSuperpotentials
dc.subject.keywordF(r) gravity
dc.subject.keywordSingularity
dc.subject.keywordCurrents
dc.subject.keywordGravity
dc.subject.keywordTorsion.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleGeometric inequivalence of metric and Palatini formulations of General Relativity
dc.typejournal article
dc.volume.number802
dspace.entity.typePublication
relation.isAuthorOfPublication3729ced5-9cbe-4f32-9550-6f320f10832a
relation.isAuthorOfPublication.latestForDiscovery3729ced5-9cbe-4f32-9550-6f320f10832a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rubiera, D 05 libre+CC.pdf
Size:
252.67 KB
Format:
Adobe Portable Document Format

Collections