Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Local Geometry of Self-similar Sets: Typical Balls, Tangent Measures and Asymptotic Spectra.

dc.contributor.authorMera Rivas, María Eugenia
dc.contributor.authorLlorente Comi, Marta
dc.contributor.authorMorán Cabré, Manuel
dc.date.accessioned2024-01-24T09:44:22Z
dc.date.available2024-01-24T09:44:22Z
dc.date.issued2023
dc.description.abstractWe analyze the local geometric structure of self-similar sets with open set condition through the study of the properties of a distinguished family of spherical neighborhoods, the typical balls. We quantify the complexity of the local geometry of self-similar sets, showing that there are uncountably many classes of spherical neighborhoods that are not equivalent under similitudes. We show that at a tangent level, the uniformity of the Euclidean space is recuperated in the sense that any typical ball is a tangent measure of the measure at mu-a.e. point, where mu is any self-similar measure. We characterize the spectrum of asymptotic densities of metric measures in terms of the packing and centered Hausdorff measures. As an example, we compute the spectrum of asymptotic densities of the Sierpiński gasket.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationMorán M., Llorente M., Mera M.E. Local geometry of self-similar sets: typical balls, tangent measures and asympotic spectra. Fractals Vol. 31, No. 05, 2350059 (2023)
dc.identifier.doi10.1142/s0218348x23500597
dc.identifier.essn1793-6543
dc.identifier.issn0218-348X
dc.identifier.officialurlhttps://www.worldscientific.com/worldscinet/fractals
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94994
dc.issue.number5
dc.journal.titleFractals. Complex Geometry, Patterns, and Scaling in Nature and Society
dc.language.isoeng
dc.page.initial2350059
dc.publisherWorld Scientific
dc.relation.projectIDUniversidad Complutense de Madrid y el Banco de Santander (PR108/20-14)
dc.rights.accessRightsopen access
dc.subject.cdu5
dc.subject.keywordSelf-similar Sets
dc.subject.keywordHausdorff Measures
dc.subject.keywordTangent Measures
dc.subject.keywordDensity of Measures
dc.subject.keywordComputability of Fractal Measures
dc.subject.keywordComplexity of Topological Spaces
dc.subject.keywordSierpiński Gasket
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmGeometría
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1204 Geometría
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleLocal Geometry of Self-similar Sets: Typical Balls, Tangent Measures and Asymptotic Spectra.
dc.title.alternativeGeometría local de conjuntos autosemejantes: bolas típicas, medidas tangentes y espectro asintótico
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number31
dspace.entity.typePublication
relation.isAuthorOfPublication71245121-5334-43ae-92e3-eb84a42790e8
relation.isAuthorOfPublication3dcd5ee5-5b89-4791-a0c5-0e742ca856ee
relation.isAuthorOfPublication36e295dc-70b7-4ede-868c-a83357a04413
relation.isAuthorOfPublication.latestForDiscovery71245121-5334-43ae-92e3-eb84a42790e8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Local_geometry.pdf
Size:
677.77 KB
Format:
Adobe Portable Document Format

Collections