Local Geometry of Self-similar Sets: Typical Balls, Tangent
Measures and Asymptotic Spectra.
dc.contributor.author | Mera Rivas, María Eugenia | |
dc.contributor.author | Llorente Comi, Marta | |
dc.contributor.author | Morán Cabré, Manuel | |
dc.date.accessioned | 2024-01-24T09:44:22Z | |
dc.date.available | 2024-01-24T09:44:22Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We analyze the local geometric structure of self-similar sets with open set condition through the study of the properties of a distinguished family of spherical neighborhoods, the typical balls. We quantify the complexity of the local geometry of self-similar sets, showing that there are uncountably many classes of spherical neighborhoods that are not equivalent under similitudes. We show that at a tangent level, the uniformity of the Euclidean space is recuperated in the sense that any typical ball is a tangent measure of the measure at mu-a.e. point, where mu is any self-similar measure. We characterize the spectrum of asymptotic densities of metric measures in terms of the packing and centered Hausdorff measures. As an example, we compute the spectrum of asymptotic densities of the Sierpiński gasket. | |
dc.description.department | Depto. de Análisis Económico y Economía Cuantitativa | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.identifier.citation | Morán M., Llorente M., Mera M.E. Local geometry of self-similar sets: typical balls, tangent measures and asympotic spectra. Fractals Vol. 31, No. 05, 2350059 (2023) | |
dc.identifier.doi | 10.1142/s0218348x23500597 | |
dc.identifier.essn | 1793-6543 | |
dc.identifier.issn | 0218-348X | |
dc.identifier.officialurl | https://www.worldscientific.com/worldscinet/fractals | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/94994 | |
dc.issue.number | 5 | |
dc.journal.title | Fractals. Complex Geometry, Patterns, and Scaling in Nature and Society | |
dc.language.iso | eng | |
dc.page.initial | 2350059 | |
dc.publisher | World Scientific | |
dc.relation.projectID | Universidad Complutense de Madrid y el Banco de Santander (PR108/20-14) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 5 | |
dc.subject.keyword | Self-similar Sets | |
dc.subject.keyword | Hausdorff Measures | |
dc.subject.keyword | Tangent Measures | |
dc.subject.keyword | Density of Measures | |
dc.subject.keyword | Computability of Fractal Measures | |
dc.subject.keyword | Complexity of Topological Spaces | |
dc.subject.keyword | Sierpiński Gasket | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Geometría | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1204 Geometría | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Local Geometry of Self-similar Sets: Typical Balls, Tangent Measures and Asymptotic Spectra. | |
dc.title.alternative | Geometría local de conjuntos autosemejantes: bolas típicas, medidas tangentes y espectro asintótico | |
dc.type | journal article | |
dc.type.hasVersion | AM | |
dc.volume.number | 31 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 71245121-5334-43ae-92e3-eb84a42790e8 | |
relation.isAuthorOfPublication | 3dcd5ee5-5b89-4791-a0c5-0e742ca856ee | |
relation.isAuthorOfPublication | 36e295dc-70b7-4ede-868c-a83357a04413 | |
relation.isAuthorOfPublication.latestForDiscovery | 71245121-5334-43ae-92e3-eb84a42790e8 |
Download
Original bundle
1 - 1 of 1