Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A hybrid optoelectronic Mott insulator

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

The coupling of electronic degrees of freedom in materials to create "hybridized functionalities" is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition (MIT) is technologically attractive due to the large changes in resistance, tunable by doping, strain, electric fields, and orbital occupancy but not, in and of itself, controllable with light. Here, an alternate approach is presented to produce optical functionalities using a properly engineered photoconductor/strongly correlated hybrid heterostructure. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the intimate proximity between the two materials, the heterostructure exhibits giant volatile and nonvolatile, photoinduced resistivity changes with substantial shifts in the MIT transition temperatures. This approach can be extended to other judicious combinations of strongly correlated materials.

Research Projects

Organizational Units

Journal Issue

Description

©2021 American Institute of Physics We thank R. C. Dynes, A. Hoffmann, J. A. Schuller, and Y. Takamura for useful conversations. We thank Francisco Schuller for supplying the Au for the electrodes. This collaborative work was supported as part of the "Quantum Materials for Energy Efficient Neuromorphic Computing" (Q-MEEN-C), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under the Award No. DE-SC0019273. A.R.-C. thanks the economic support of the mobility research program Salvador de Madariaga from Spanish Ministry of Science.

Keywords

Collections