Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On limits of shape maps

dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-21T02:02:38Z
dc.date.available2023-06-21T02:02:38Z
dc.date.issued1986-07
dc.description.abstractThe notions of accessible and strongly accessible approximative maps are defined and studied. Approximative maps obtained as limits of sequences of shape equivalences are strongly accessible. It is proved that strongly accessible approximative maps induce pseudo-isomorphisms in the sense of H. Kato. It is also seen that, under the assumption of calmness, shape morphisms induced by accessible approximative maps are left invertible. As an application some results of L. Boxer concerning approximately invertible maps are generalized.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17175
dc.identifier.doi10.1016/0166-8641(86)90039-8
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0166864186900398
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64692
dc.issue.number2
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final181
dc.page.initial173
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordHyperspaces
dc.subject.keywordSpecial maps on topological spaces (open
dc.subject.keywordclosed
dc.subject.keywordperfect
dc.subject.keywordetc.)
dc.subject.keywordCompact (locally compact) absolute neighborhood retracts
dc.subject.keywordShape theory
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleOn limits of shape maps
dc.typejournal article
dc.volume.number23
dcterms.referencesB.J. Ball, Shapes of saturated subsets of compacta, Colloq. Math. 29 (1974) 241-246. K. Borsuk, Theory of shape, Monografie Matematyczne 59, Warszawa, 1975. K. Borsuk, Some quantitative properties of shapes, Fund. Math. 93 (1976) 197-212. L. Boxer, AANR’s and AR1 maps, Top. Proc. 6 (1981), 219-226. L. Boxer, Remarks on quasi-domination, Bull. Acad. Polon. Sci. 30 (1982) 553-558. L. Boxer, Maps related to calmness, Topology Appl. 15 (1983) 11-17. Z. Cerin, Homotopy properties of locally compact spaces ad infinity-calmness and smoothness, Pacific J. Math. 79 (1978) 69-91. Z. Cerin and A.P. Sostak, Some remarks on Borsuk’s fundamental metric, in: A. Czaszar, ed., Proc. Colloq. Topology, Budapest, 1978 (North-Holland, Amsterdam, 1980) 233-252. Z. Cerin, C-E-movable and (C, D)-E-tame compacta, Houston J. Math. 9 (1983), 9-27. J. Ford and J.W. Rogers, Refinable maps, Colloq. Math. 39 (1978) 263-269. H. Kato, Refinable maps in the theory of shape, Fund. Math. 113 (1981) 119-129. H. Kato, A remark on refinable maps and calmness, Proc. Amer. Math. Sot. 90 (1984) 649-652. A. Koyama, Note on quasi-domination in the sense of K. Borsuk, Proc. Japan Acad. 54 (1978) 151-154. V.F. Laguna and J.M.R. Sanjurjo, Spaces of approximative maps, preprint. S. MardeSiC, On Borsuk’s shape theory for compact pairs, Bull. Acad. Polon. Sci. 21 (1973) 1131-1136. S. MardeSiC and J. Segal, Shape Theory (North-Holland, Amsterdam, 1982). J.M.R. Sanjurjo, Algunas propiedades de tipo homotopico de 10s espacios FANR, An. Inst. Mat. UNAM 20 (1980) 113-125.
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo37.pdf
Size:
603.74 KB
Format:
Adobe Portable Document Format

Collections