Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm.

dc.contributor.authorGonzález Montesinos, Fuensanta
dc.contributor.authorBlanco Montenegro, Isabel
dc.contributor.authorArnoso Sampedro, José
dc.date.accessioned2023-06-18T06:53:02Z
dc.date.available2023-06-18T06:53:02Z
dc.date.issued2016
dc.description.abstractWe present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).en
dc.description.departmentUnidad Deptal. de Astronomía y Geodesia
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipInstituto Geográfico Nacional (España)
dc.description.sponsorshipMinisterio de Agricultura, Pesca y Alimentación (España)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37761
dc.identifier.citationMontesinos, F.G., Blanco-Montenegro, I., Arnoso, J., 2016. Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm. Physics of the Earth and Planetary Interiors 253, 74–87. https://doi.org/10.1016/j.pepi.2016.02.004
dc.identifier.doi10.1016/j.pepi.2016.02.004
dc.identifier.issn0031-9201
dc.identifier.officialurlhttps//doi.org/10.1016/j.pepi.2016.02.004
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0031920116000297
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24490
dc.journal.titlePhysics of the Earth and Planetary Interiors
dc.language.isoeng
dc.page.final87
dc.page.initial74
dc.publisherElsevier
dc.relation.projectIDCGL2011-25494
dc.relation.projectID320/2011
dc.relation.projectIDPR2010-0498
dc.rights.accessRightsrestricted access
dc.subject.cdu52
dc.subject.keywordCanary Islands
dc.subject.keywordGenetic algorithm
dc.subject.keywordInverse problem
dc.subject.keywordMagnetic anomalies
dc.subject.keywordPotential fields
dc.subject.ucmAstronomía (Matemáticas)
dc.subject.unesco21 Astronomía y Astrofísica
dc.titleThree-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm.en
dc.typejournal article
dc.volume.number253
dspace.entity.typePublication
relation.isAuthorOfPublication657523e7-0b3a-4c5c-a26e-edcc923ba74a
relation.isAuthorOfPublication6ce0d57b-423d-485a-986b-e9e56dda956d
relation.isAuthorOfPublication.latestForDiscovery657523e7-0b3a-4c5c-a26e-edcc923ba74a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GMonte17.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format

Collections