Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Divergence-based confidence intervals in false-positive misclassification model

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Gordon & Breach
Citations
Google Scholar

Citation

Abstract

In this article, we introduce minimum divergence estimators of parameters of a binary response model when data are subject to false-positive misclassification and obtained using a double-sampling plan. Under this set up, the problem of goodness-of-fit is considered and divergence-based confidence intervals (CIs) for a population proportion parameter are derived. A simulation experiment is carried out to compare the coverage probabilities of the new CIs. An application to real data is also given.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections