Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

Divergence-based confidence intervals in false-positive misclassification model

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Gordon & Breach
Citations
Google Scholar

Citation

Abstract

In this article, we introduce minimum divergence estimators of parameters of a binary response model when data are subject to false-positive misclassification and obtained using a double-sampling plan. Under this set up, the problem of goodness-of-fit is considered and divergence-based confidence intervals (CIs) for a population proportion parameter are derived. A simulation experiment is carried out to compare the coverage probabilities of the new CIs. An application to real data is also given.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections