Testing equivalence with repeated measures: tests of the difference model of two-alternative forced-choice performance.

Loading...
Thumbnail Image
Full text at PDC
Publication date

2011

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Citation
Alcalá-Quintana, R., & García-Pérez, M. A. (2007). A comparison of fixed-step-size and Bayesian staircases for sensory threshold estimation. Spatial Vision, 20, 197-218. Altman, D. G., & Bland, J. M. (1983). Measurement in medicine: The analysis of method comparison studies. The Statistician, 32, 307-317. doi:10.2307/2987937 Anderson, S., & Hauck, W. W. (1983). A new procedure for testing equivalence in comparative bioavailability and other clinical trials. Communications in Statistics – Theory and Methods, 12, 2663-2692. doi:10.1080/03610928308828634 Astrua, M., Ichim, D., Pennecchi, F., & Pisani, M. (2007). Statistical techniques for assessing agreement between two instruments. Metrologia, 44, 385-392. doi:10.1088/0026-1394/44/5/015 Baguley, T., Lansdale, M. W., Lines, L. K., & Parkin, J. K. (2006). Two spatial memories are not better than one: Evidence of exclusivity in memory for object location. Cognitive Psychology, 52, 243-289. doi:10.1016/j.cogpsych.2005.08.001 Benjamini, Y. (1983). Is the t test really conservative when the parent distribution is long-tailed? Journal of the American Statistical Association, 78, 645-654. doi:10.2307/2288133 Blackwelder, W. C. (1982). “Proving the null hypothesis” in clinical trials. Controlled Clinical Trials, 3, 345-353. doi:10.1016/0197- 2456(81)90059-3 Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327, 307-310. doi:10.1016/j.ijnurstu.2009.10.001 Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8, 135-160. doi:10.1191/096228099673819272 Bland, J. M., & Altman, D. G. (2003). Applying the right statistics: Analyses of measurement studies. Ultrasound in Obstetrics and Gynecology, 22, 85-93. doi:10.1002/uog.122 Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71, 425-440. doi:10.1007/s11336-006-1447-6 Bradley, E. L., & Blackwood, L. G. (1989). Comparing paired data: A simultaneous test for means and variances. The American Statistician, 43, 234-235. doi:10.2307/2685368 Brink, W. P. van den, & Koele, P. (1980). Item sampling, guessing and decision-making in achievement testing. British Journal of Mathematical and Statistical Psychology, 33, 104-108. Casella, G. (1983). Leverage and regression through the origin. The American Statistician, 37, 147-152. doi:10.2307/2685876 Chatterjee, S., Hadi, A. S., & Price, B. (2000). Regression Analysis by Example (3rd edition). New York, NY: Wiley Corina, D. P. (1999). On the nature of left hemisphere specialization for signed language. Brain and Language, 69, 230-240. doi:10.1006/brln.1999.2062 Cox, N. J. (2006). Assessing agreement of measurements and predictions in geomorphology. Geomorphology, 76, 332-346. doi:10.1016/j.geomorph.2005.12.001 Cressie, N. (1980). Relaxing assumptions in the one-sample ttest. Australian Journal of Statistics, 22, 143-153. doi:10.1111/j.1467-842X.1980.tb01161.x Cusack, R., & Carlyon, R. P. (2003). Perceptual asymmetries in audition. Journal of Experimental Psychology: Human Perception and Performance, 29, 713-725. doi:10.1037/0096-1523.29.3.713 Diederich, A., & Colonius, H. (2011). Modeling multisensory processes in saccadic responses: Time-window-of-integration model. In M. M. Murray & M. T. Wallace (Eds.), The Neural bases of multisensory processes. Boca Raton, FL: CRC Press, in press. Dierdorff, E. C., & Morgeson, F. P. (2007). Consensus in work role requirements: The influence of discrete occupational context on role expectations. Journal of Applied Psychology, 92, 1228-1241. doi:10.1037/0021-9010.92.5.1228 Dixon, P., & O’Reilly, T. (1999). Scientific versus statistical inference. Canadian Journal of Experimental Psychology, 53, 133-149. doi:10.1037/h0087305 Dunn, G., & Roberts, C. (1999). Modelling method comparison data. Statistical Methods in Medical Research, 8, 161-179. doi:10.1191/096228099668524590 Dunnett, C. W., & Gent, M. (1977). Significance testing to establish equivalence between treatments, with special reference to data in the form of 2 ´ 2 tables. Biometrics, 33, 593-602. doi:10.2307/2529457 Edgell, S. E. (1995). Commentary on “Accepting the null hypothesis.” Memory & Cognition, 23, 525. doi:10.3758/BF03197252 Eisenhauer, J. G. (2003). Regression through the origin. Teaching Statistics, 25, 76-80. doi:10.1111/1467-9639.00136 Ferrand, L. (1999). Why naming takes longer than reading? The special case of Arabic numbers. Acta Psychologica, 100, 253- 266. doi:10.1016/S0001-6918(98)00021-3 Freund, R. J., Wilson, W. J., & Sa, P. (2006). Regression Analysis: Statistical Modeling of a Response Variable (2nd edition). Burlington, MA: Academic Press. Frick, R. R. (1995a). Accepting the null hypothesis. Memory & Cognition, 23, 132-138. doi:10.3758/BF03210562 Frick, R. R. (1995b). A reply to Edgell. Memory & Cognition, 23, 526. doi:10.3758/BF03197253 García-Pérez, M. A. (1989). Item sampling, guessing, partial information and decision-making in achievement testing. In E. E. Roskam (Ed.), Mathematical Psychology in Progress (pp. 249-265). Berlin, Germany: Springer. García-Pérez, M. A. (2010). Statistical criteria for parallel tests: A comparison of accuracy and power. Manuscript submitted for publication. García-Pérez, M. A., & Alcalá-Quintana, R. (2009). Fixed vs. variable noise in 2AFC contrast discrimination: Lessons from psychometric functions. Spatial Vision, 22, 273-300. doi:10.1163/156856809788746309 García-Pérez, M. A., & Núñez-Antón, V. (2009). Accuracy of power-divergence statistics for testing independence and homogeneity in two-way contingency tables. Communications in Statistics – Simulation and Computation, 38, 503-512. doi:10.1080/03610910802538351 Gigerenzer, G. (1993). The Superego, the Ego, and the Id in statistical reasoning. In G. Keren & C. Lewis (Eds.), A handbook for data analysis in the behavioral sciences. Methodological issues. (pp. 311-339). Hillsdale, NJ: Erlbaum. Gigerenzer, G. (1998). We need statistical thinking, not statistical rituals. Behavioral and Brain Sciences, 21, 199-200. doi:10.1017/S0140525X98281167 Goertzen, J. R., & Cribbie, R. A. (2010). Detecting a lack of association: An equivalence testing approach. British Journal of Mathematical and Statistical Psychology, 63, 527-537. doi:10.1348/000711009X475853 Good, P. I., & Hardin, J. W. (2006). Common errors in statistics (and how to avoid them) (2nd edition). Hoboken, NJ: Wiley. Goodman, S. N., & Royall, R. (1988). Evidence and scientific research. American Journal of Public Health, 78, 1568-1574. doi:10.2105/AJPH.78.12.1568 Gulliksen, H. (1950). Theory of mental tests. New York, NY: Wiley. Hacking, I. (1965). The logic of statistical inference. Cambridge, UK: Cambridge University Press. Hahn, G. J. (1977). Fitting regression models with no intercept term. Journal of Quality Technology, 9, 56-61. Hawkins, D. M. (2002). Diagnostics for conformity of paired quantitative measurements. Statistics in Medicine, 21, 1913- 1935. doi:10.1002/sim.1013 Hays, S., & McCallum, R. S. (2005). A comparison of the penciland-paper and computer-administered Minnesota Multiphasic Personality Inventory–Adolescent. Psychology in the Schools, 42, 605-613. doi:10.1002/pits.20106 Hietanen, J. K., & Leppänen, J. M. (2003). Does facial expression affect attention orienting by gaze direction cues? Journal of Experimental Psychology: Human Perception and Performance, 29, 1228-1243. doi:10.1037/0096-1523.29.6.1228 Hollands, J. G., & Spence, I. (1998). Judging proportion with graphs: The summation model. Applied Cognitive Psychology, 12, 173- 190. doi:10.1002/(SICI)10990720(199804)12:23.0.CO;2-K Huntsman, L. A. (1998). Testing the direct-access model: GOD does not prime DOG. Perception & Psychophysics, 60, 1128- 1140. doi:10.3758/BF03206163 Jäkel, F., & Wichmann, F. A. (2006). Spatial four-alternative forcedchoice method is the preferred psychophysical method for naïve observers. Journal of Vision, 6, 1307-1322. doi:10.1167/6.11.13 Jordan, P. J., & Troth, A. C. (2004). Managing emotions during team problem solving: Emotional intelligence and conflict resolution. Human Performance, 17, 195-218. doi:10.1207/s15327043hup1702_4 Kane, M. J., Poole, B. J., Tuholski, S. W., & Engle, R. W. (2006). Working memory capacity and the top-down control of visual search: Exploring the boundaries of “executive attention.” Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 749-777. doi:10.1037/0278-7393.32.4.749 Kirkwood, T. B. L. (1981). Bioequivalence testing – A need to rethink. Biometrics, 37, 589-591. doi:10.2307/2530573 Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255-268. doi:10.2307/2532051 Lin, L. I.-K. (1992). Assay validation using the concordance correlation coefficient. Biometrics, 48, 599-604. doi:10.2307/2532314 Lin, L. I.-K. (2000). Correction: A note on the concordance correlation coefficient. Biometrics, 56, 324-325. Lin, L., Hedayat, A. S., Sinha, B., & Yang, M. (2002). Statistical methods for assessing agreement: Models, issues, and tools. Journal of the American Statistical Association, 97, 257-270. doi:10.1198/016214502753479392 Loftus, G. (1985). Johannes Kepler’s computer simulation of the universe: Some remarks about theory in psychology. Behavior Research Methods, Instruments, & Computers, 17, 149-156. Los, S. A. (2004). Inhibition of return and nonspecific preparation: Separable inhibitory control mechanisms in space and time. Perception & Psychophysics, 66, 119-130. doi:10.3758/BF03194866 Macmillan, N. A., & Creelman, C. D. (2005). Detection Theory: A user’s guide. Mahwah, NJ: Erlbaum. McNicol, D. (2005). A primer of Signal Detection Theory. Mahwah, NJ: Erlbaum. Metzler, C. M. (1974). Bioavailability – A problem in equivalence. Biometrics, 30, 309-317. doi:10.2307/2529651 Miller, J. (1996). The sampling distribution of d’. Perception & Psychophysics, 58, 65-72. doi:10.3758/BF03205476 Mukherjee, C., White, H., & Wuyts, M. (1998). Econometrics and data analysis for developing countries. New York, NY: Routledge. Myers, R. H. (1990). Classical and modern regression with applications (2nd edition). Boston, MA: PWS-KENT. Neter, J., Kutner, M. H., Wasserman, W., & Nachtsheim, C. J. (1996). Applied linear statistical models (4th edition). Chicago, IL: Irwin. Perea, M., & Rosa, E. (2002). Does the proportion of associatively related pairs modulate the associative priming effect at very brief stimulus-onset asynchronies? Acta Psychologica, 110, 103-124. doi:10.1016/S00016918(01)00074-9 Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113, 553-565. doi:10.1037//0033-2909.113.3.553 Rorden, C., Karnath, H.O., & Driver, J. (2001). Do neckproprioceptive and caloric-vestibular stimulation influence covert visual attention in normals, as they influence visual neglect? Neuropsychologia, 39, 364-375. doi:10.1016/S0028-3932(00)00126-3 Russo, R., Fox, E., & Bowles, R. J. (1999). On the status of implicit memory bias in anxiety. Cognition and Emotion, 13, 435- 456. doi:10.1080/026999399379258 Saint-Aubin, J., & Poirier, M. (1999). Semantic similarity and immediate serial recall: Is there a detrimental effect on order information? Quarterly Journal of Experimental Psychology, 52(A), 367-394. doi:10.1080/027249899391115 Segrin, C. (2004). Concordance on negative emotion in close relationships: Transmission of emotion or assortative mating? Journal of Social and Clinical Psychology, 23, 836-856. doi:10.1521/jscp.23.6.836.54802 Selwyn, M. R., Demptster, A. P., & Hall, N. R. (1981). A Bayesian approach to bioequivalence for the 2 ´ 2 changeover design. Biometrics, 37, 11-21. doi:10.2307/2530518 Selwyn, M. R., & Hall, N. R. (1984). On Bayesian methods for bioequivalence. Biometrics, 40, 1103-1108. doi:10.2307/2531161 Sen, A., & Srivastava, M. (1990). Regression analysis. Theory, methods, and applications. New York, NY: Springer. Smith, R. W., & Kounios, J. (1996). Sudden insight: All-or-none processing revealed by speed–accuracy decomposition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1443-1462. doi:10.1037//0278-7393.22.6.1443 Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59, 1- 22. doi:10.3758/BF03206843 Spence, C., & Driver, J. (1998). Auditory and audiovisual inhibition of return. Perception & Psychophysics, 60, 125-139. doi:10.3758/BF03211923 Stegner, B. L., Bostrom, A. G., & Greenfield, T. K. (1996). Equivalence testing for use in psychosocial and services research: An introduction with examples. Evaluation and Program Planning, 19, 193-198. doi:10.1016/01497189(96)00011-0 Van Berkum, J. J. A. (1997). Syntactic processes in speech production: The retrieval of grammatical gender. Cognition, 64, 115-152. doi:10.1016/S0010-0277(97)00026-7 van Stralen, K. J., Jager, K. J., Zoccali, C., & Dekker, F. W. (2008). Agreement between methods. Kidney International, 74, 1116- 1120. doi:10.1038/ki.2008.306 Tipples, J., & Sharma, D. (2000). Orienting to exogenous cues and attentional bias to affective pictures reflect separate processes. British Journal of Psychology, 91, 87-97. doi:10.1348/000712600161691 Tryon, W. W. (2001). Evaluating statistical difference, equivalence, and indeterminacy using inferential confidence intervals: An integrated alternative method of conducting null hypothesis statistical tests. Psychological Methods, 6, 371-386. Tryon, W. W., & Lewis, C. (2008). An inferential confidence interval method for establishing statistical equivalence that corrects Tryon’s (2001) reduction factor. Psychological Methods, 13, 272-277. doi:10.1037/a0013158 Turner, M. E. (1960). Straight line regression through the origin. Biometrics, 16, 483-485. doi:10.2307/2527698 Vatakis, A., & Spence, C. (2008). Evaluating the influence of the ‘unity assumption’ on the temporal perception of realistic audiovisual stimuli. Acta Psychologica, 127, 12-23. doi:10.1016/j.actpsy.2006.12.002 Vatakis, A., Ghazanfar, A. A., & Spence, C. (2008). Facilitation of multisensory integration by the “unity effect” reveals that speech is special. Journal of Vision, 8(9), 1-11. doi:10.1167/ 8.9.14 Wang, C. M., & Iyer, H. K. (2008). Fiducial approach for assessing agreement between two instruments. Metrologia, 45, 415- 421. doi:10.1088/0026-1394/45/4/006 Westgard, J. O., & Hunt, M. R. (1973). Use and interpretation of common statistical tests in method-comparison studies. Clinical Chemistry, 19, 49-57. doi:10.1373/clinchem.2007.094060 Westlake, W. J. (1976). Symmetrical confidence intervals for bioequivalence trials. Biometrics, 32, 741-744. doi:10.2307/2529259 Westlake, W. J. (1979). Statistical aspects of comparative bioavailability trials. Biometrics, 35, 273-280. doi:10.2307/ 2529949 Westlake, W. J. (1981). Bioequivalence testing – A need to rethink (Reader reaction response). Biometrics, 37, 591-593. Wickens, T. D. (2002). Elementary Signal Detection Theory. New York, NY: Oxford. Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vision Research, 48, 1837-1851. doi:10.1016/j.visres.2008.05.008 Zampini, M., Brown, T., Shore, D. I., Maravita, A., Röder, B., & Spence, C. (2005). Audiotactile temporal order judgments. Acta Psychologica, 118, 277-291. doi:10.1016/j.actpsy.2004.10.017
Abstract
Solving theoretical or empirical issues sometimes involves establishing the equality of two variables with repeated measures. This defies the logic of null hypothesis significance testing, which aims at assessing evidence against the null hypothesis of equality, not for it. In some contexts, equivalence is assessed through regression analysis by testing for zero intercept and unit slope (or simply for unit slope in case that regression is forced through the origin). This paper shows that this approach renders highly inflated Type I error rates under the most common sampling models implied in studies of equivalence. We propose an alternative approach based on omnibus tests of equality of means and variances and in subject-by-subject analyses (where applicable), and we show that these tests have adequate Type I error rates and power. The approach is illustrated with a re-analysis of published data from a signal detection theory experiment with which several hypotheses of equivalence had been tested using only regression analysis. Some further errors and inadequacies of the original analyses are described, and further scrutiny of the data contradict the conclusions raised through inadequate application of regression analyses.
Resolver problemas teóricos o empíricos requiere en ocasiones contrastar la equivalencia de dos variables usando medidas repetidas. El mero planteamiento de este objetivo supone un desafío para la lógica subyacente a los métodos de contraste de hipótesis estadísticas, que están diseñados para evaluar la magnitud de la evidencia contraria a la hipótesis nula y de ningún modo permiten evaluar la evidencia a favor de ella. En algunos contextos aplicados se ha abordado el problema utilizando métodos de regresión y contrastando la hipótesis de que la pendiente es 1 y la hipótesis de que la ordenada en el origen es 0 (o simplemente la primera de ellas cuando se fuerza la regresión “por el origen”). Este trabajo muestra que esa estrategia conlleva tasas empíricas de error tipo I muy superiores a las tasas nominales bajo cualquiera de los modelos de muestreo más comúnmente implicados en estudios de equivalencia. Como alternativa, se propone una estrategia basada tanto en pruebas tipo ómnibus que incluyen contrastes de medias y varianzas como en análisis sujeto a sujeto (cuando la situación lo permita). Un estudio de simulación con estas pruebas muestra que la tasa empírica de error tipo I se ajusta a la tasa nominal y que la potencia de los contrastes es adecuada. A modo de ilustración, se aplican estos contrastes para re-analizar los datos de un experimento psicofísico sobre detección de contraste que originalmente sólo fueron analizados mediante regresión por parte de los autores del estudio, pese a que todas las hipótesis consideradas implicaban equivalencia con medidas repetidas. Nuestro reanálisis permite una inspección más minuciosa de los datos que revela contradicciones entre las características empíricas de los datos y las conclusiones extraídas mediante la aplicación inadecuada de métodos de regresión. Los resultados de este re-análisis también invalidan las conclusiones extraídas en la publicación original.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections