Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Gradient Fusion Operators for Vector-Valued Image Processing

dc.book.titleAdvances in Fuzzy Logic and Technology
dc.contributor.authorLópez Molina, Carlos
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorBustince, Humberto
dc.contributor.authorDe Baets, Bernard
dc.contributor.editorOlaso, Pablo
dc.contributor.editorRojas Patuelli, Karina
dc.contributor.editorGómez González, Daniel
dc.contributor.editorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-18T00:22:29Z
dc.date.available2023-06-18T00:22:29Z
dc.date.issued2017
dc.descriptionInternational Workshop on Intuitionistic Fuzzy Sets and Generalized Nets Proceedings of the Conference of the European Society for Fuzzy Logic and Technology
dc.description.abstractWhile classical image processing algorithms were designed for scalar-valued (binary or grayscale) images, new technologies have made it commonplace to work with vector-valued ones. These technologies can involve new types of sensors, as in remote sensing, but also mathematical models leading to an increased cardinality at each pixel. This work analyzes the role of first-order differentiation in vector-valued images; specifically, we explore a novel operator to produce a 2D vector from a Jacobian matrix, in order to represent the variation in a vector-valued image as a planar feature.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/44908
dc.identifier.citationKacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. eds: Advances in Fuzzy Logic and Technology 2017. Springer International Publishing, Cham (2018)
dc.identifier.doi10.1007/978-3-319-66824-6 38
dc.identifier.isbn978-3319668260
dc.identifier.officialurlhttps//doi.org/10.1007/978-3-319-66824-6 38
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-319-66824-6_38
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19473
dc.issue.number642
dc.language.isoeng
dc.page.final442
dc.page.initial430
dc.page.total602
dc.publisherSpringer
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing
dc.rights.accessRightsrestricted access
dc.subject.cdu510.6
dc.subject.keywordVector-valued images
dc.subject.keywordDifferentiation
dc.subject.keywordJacobian matrix
dc.subject.keywordInformation fusion
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleGradient Fusion Operators for Vector-Valued Image Processingen
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isEditorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isEditorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isEditorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero279.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format