Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bordered and unbordered Klein surfaces with maximal symmetry

Loading...
Thumbnail Image

Full text at PDC

Publication date

1986

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science B.V. (North-Holland)
Citations
Google Scholar

Citation

Etayo Gordejuela, J. J., & Pérez Chirinos, C. «Bordered and Unbordered Klein Surfaces with Maximal Symmetry». Journal of Pure and Applied Algebra, vol. 42, n.o 1, 1986, pp. 29-35. DOI.org (Crossref), https://doi.org/10.1016/0022-4049(86)90057-5.

Abstract

A compact Klein surface with boundary of algebraic genus g≥2 has at most 12(g−1) automorphisms. When a surface attains this bound we say that it has maximal symmetry, and the group of automorphisms is then an M group. In this paper we exhibit four new infinite families of M simple groups, and determine with the aid of a computer the groups PSL(n, q) of order less than 50,000 that are M groups. Using these results, we prove the existence of seven topologically different surfaces of algebraic genus 1013, all of them having maximal symmetry.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections