Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

AGV Fuzzy Control Optimized by Genetic Algorithms

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-09T14:50:23Z
dc.date.available2024-12-09T14:50:23Z
dc.date.issued2024-03-23
dc.description.abstractAutomated Guided Vehicles (AGV) are an essential element of transport in industry 4.0. Although they may seem simple systems in terms of their kinematics, their dynamics is very complex, and it requires robust and efficient controllers for their routes in the workspaces. In this paper, we present the design and implementation of an intelligent controller of a hybrid AGV based on fuzzy logic. In addition, genetic algorithms have been used to optimize the speed control strategy, aiming at improving efficiency and saving energy. The control architecture includes a fuzzy controller for trajectory tracking that has been enhanced with genetic algorithms. The cost function first maximizes the time in the circuit and then minimizes the guiding error. It has been validated on the mathematical model of a commercial hybrid AGV that merges tricycle and differential robot components. This model not only considers the kinematics and dynamics equations of the vehicle but also the impact of friction. The performance of the intelligent control strategy is compared with an optimized PID controller. Four paths were simulated to test the approach validity.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-Garcia, J. E., & Santos, M. (2024). AGV fuzzy control optimized by genetic algorithms. Logic Journal of the IGPL, jzae033.
dc.identifier.doihttps://doi.org/10.1093/jigpal/jzae033
dc.identifier.officialurlhttps://academic.oup.com/jigpal/article-abstract/32/6/955/7632104?login=false
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112244
dc.issue.number6
dc.journal.titleLogic Journal of the IGPL
dc.language.isoeng
dc.page.final970
dc.page.initial955
dc.publisherOxford Academic
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordAutomated Guided Vehicle (AGV)
dc.subject.keywordFuzzy logic
dc.subject.keywordGenetic algorithms
dc.subject.keywordIntelligent control
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleAGV Fuzzy Control Optimized by Genetic Algorithms
dc.typejournal article
dc.volume.number32
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Revised_IGPL_AGV_JESG_MS.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format

Collections