Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonparametric Multiple Change Point Analysis of the Global Financial Crisis

dc.contributor.authorAllen, David E.
dc.contributor.authorMcAleer, Michael
dc.contributor.authorPowell, Robert J.
dc.contributor.authorSingh, Abhay K.
dc.date.accessioned2023-06-19T23:53:02Z
dc.date.available2023-06-19T23:53:02Z
dc.date.issued2013-05
dc.descriptionJEL: C02, G11.
dc.description.abstractThis paper presents an application of a recently developed approach by Matteson and James (2012) for the analysis of change points in a data set, namely major financial market indices converted to financial return series. The general problem concerns the inference of a change in the distribution of a set of time-ordered variables. The approach involves the nonparametric estimation of both the number of change points and the positions at which they occur. The approach is general and does not involve assumptions about the nature of the distributions involved or the type of change beyond the assumption of the existence of the absolute moment, for some 2 (0; 2). The estimation procedure is based on hierarchical clustering and the application of both divisive and agglomerative algorithms. The method is used to evaluate the impact of the Global Financial Crisis (GFC) on the US, French, German, UK, Japanese and Chinese markets, as represented by the S&P500, CAC, DAX, FTSE All Share, Nikkei 225 and Shanghai A share Indices, respectively, from 2003 to 2013. The approach is used to explore the timing and number of change points in the datasets corresponding to the GFC and subsequent European Debt Crisis.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21559
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/41479
dc.issue.number17
dc.language.isoeng
dc.page.total14
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.keywordNonparametric Analysis
dc.subject.keywordMultiple Change Points
dc.subject.keywordCluster Analysis
dc.subject.keywordGlobal Financial.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleNonparametric Multiple Change Point Analysis of the Global Financial Crisis
dc.typetechnical report
dc.volume.number2013
dcterms.referencesAas, K., Czado, C., Frigessi, A., and H. Bakken (2009) “Pair-copula constructions of multiple dependence”, Insurance, Mathematics and Economics, 44, 182–198. Allen, D.E., R. Amram and M. McAleer (2013) “Volatility spillovers from the Chinese stock market to economic neighbours”, Mathematics and Computers in Simulation, forthcoming. Ball, R., and P. Brown (1968) “An empirical evaluation of accounting income numbers,” J. Acc. Res., 6(2), 159–78. Baillie, R.T., Bollerslev, T., and H.O. Mikkelson (1996) “Fractionally integrated generalised autoregressive conditional heterscedasticity”, Journal of Econometrics, 74, 3-30. Bedford, T. and R.M. Cooke (2001) “Probability density decomposition for conditionally dependent random variables modeled by vines”, Annals of Mathematics and Artificial Intelligence, 32, 245-268. Bedford, T. and R.M. Cooke (2002) “Vines - a new graphical model for dependent random variables”, Annals of Statistics, 30, 1031-1068. Burns, A.F., and W.C. Mitchell (1946) Measuring Business Cycles, New York, National Bureau of Economic Research. Carlin, B.P., Gelfand, A.E., and A.F. Smith (1992), “Hierarchical Bayesian analysis of changepoint problems”, Applied Statistics, 41, 389-405. Coutts, A., T.C. Mills, and J. Roberts (1995) “Misspecification of the market model: the implications for event studies”, Applied Economics Letters, 2, 163-165. Diebold, F., and G.D. Rudebusch (1996) “Measuring business cycles: A modern perspective”, Review of Economics and Statistics, 78, 67-77. Dungey, M., R. Fry, B. González-Hermosillo, V.L. Martin and C. Tang (2010) “Are financial crises alike?”, IMF Working Paper, WP/10/14. Fama, E., Fisher, L., Jensen, M. and R. Roll (1969) “The adjustment of stock prices to new information”, International Economic Review, 10, 1-21. Hamilton, J. D., (1989) “A new Approach to the economic analysis of nonstationary time series and the business cycle", Econometrica, 57, 357-384. Harding, D., and A.R. Pagan (2008) “Business cycle measurement”, in S.N. Durlauf and L.E. Blume (eds), The New Palgrave Dictionary of Economics (2nd Edition), Palgrave Macmillan. Jacquier, E., Polson, N.G. and P.E. Rossi (1994) “Bayesian analysis of stochastic volatility models (with discussion)”, Journal of Business and Economic Statististics, 12, 371–417. James, N.A., and D.S. Matteson, (2013) “ecp: An R package for nonparametric multiple change point analysis of multivariate data”, Technical report, Cornell University. Kurowicka, D. and R.M. Cooke (2006) “Uncertainty analysis with high dimensional dependence modelling”, Chichester: John Wiley. Lavielle, M., and Teyssiere, G. (2006) “Detection of multiple change-points in multivariate time series”, Lithuanian Mathematical Journal, 46, 287-306. Mackinlay, A.C. (1997) “Event studies in economics and finance”, Journal of Economic Literature, XXXV, 13–39. Mandelbrot, B. (2003) “Heavy tails in finance for independent or multifractal price increments”. Handbook on Heavy Tailed Distributions in Finance, Edited by Svetlozar T. Rachev (Handbooks in Finance: 30, Senior Editor: William T. Ziemba). Mandelbrot, B., P.M. Laurent Calvet and A. Fisher (1997) “The multifractal model of asset returns”, Cowles Foundation Discussion Papers, 1164. Matteson, D.S. and N.A. James, (2012) “A nonparametric approach for multiple change point analysis of multivariate data”, Working Paper, Department of Statistical Science, Cornell University. National Bureau of Economic Research, “US business cycle expansions and contractions”, http://www.nber.org/cycles/US_Business_Cycle_Expansions_and_Contractions_20120423.pdf Stock, J.H. and M.W. Watson (1989) “New indexes of coincident and leading economic indicators”, in O. Blanchard and S. Fischer (eds.), NBER Macroeconomics Annual, Cambridge, Mass, MIT Press, 351-394. Stock, J. H. and M. W.Watson (1991) “A probability model of the coincident economic indicators”, in K. Lahiri and G.H. Moore (eds.), Leading Economic Indicators: New Approaches and Forecasting Records, Cambridge: Cambridge University Press, 63-89. Stock, J.H., and M.W. Watson (1993) “A procedure for predicting recessions with leading indicators: econometric issues and recent experience," in J.H. Stock and M.W. Watson (eds.), Business Cycles, Indicators and Forecasting, Chicago: University of Chicago Press for NBER, 255-284. Talih, M. (2003) “Markov random fields on time-varying graphs, with an application to portfolio selection”, PhD Thesis. Department of Statistics, Yale University, New Haven. Talih, M. and N. Hengartner (2005) “Structural learning with time-varying components: Tracking the cross-section of financial time series”, Journal of the Royal Statistical Society, Series B, 67,3, 321-341. Tinbergen, J. (1939) Statistical testing of business cycle theories, Volume II: Business Cycles in the United States of America, 1919-1932, Geneva: League of Nations.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1317.pdf
Size:
888.68 KB
Format:
Adobe Portable Document Format