Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

A complementary approach of response surface methodology and an artificial neural network for the optimization and prediction of low salinity reverse osmosis performance

dc.contributor.authorBrooke, Ryan
dc.contributor.authorFan, Linhua
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorWang, Xu
dc.date.accessioned2023-06-22T12:37:10Z
dc.date.available2023-06-22T12:37:10Z
dc.date.issued2022-09
dc.descriptionProfessor Xu Wang was supported by Australian Research Council [ARC DP170101039].
dc.description.abstractThe treatment of saline water sources by reverse osmosis (RO) is being utilized increasingly to address water shortages around the world. The application of RO is energy-intensive; therefore, plant and process optimization are crucial. The desalination of low salinity water sources with total dissolved solids (TDS) of <5000 mg/L is less energy intensive than the desalination of highly saline seawater and brackish water. A gap exists in optimization studies on lower salinity water (TDS = 500-5000 mg/L). The novelty of the study is the development of a complementary approach using response surface methodology (RSM) and an artificial neural network (ANN) for performance modelling, optimization, and prediction of RO desalination of low salinity water. Feed water salinity, pressure, and temperature were controlled variables to model the performance of the RO system. A performance index incorporating salt rejection efficiency and permeate flux was used as the response target of the system. The optimal parameter combination within their modelled range for the best performance index occurred near the highest pressure input of 150.57 psi, at the temperature of 38.8 degrees C, and at the lowest feed salt concentration of 577 mg/L. Both the RSM and ANN models demonstrated high validity. The RSM and ANN showed R-2 values of 0.99 each and with a root mean square error of 2.41 and 5.85 respectively. The RSM showed a small benefit in model accuracy over the ANN, but the ANN has the benefit of not requiring the central composite design before experimentation and being a continuously improving prediction method as more data becomes available. Further applications of the optimization and modelling approach can be applied to RO system optimization considering membrane types and additional feedwater characteristics.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAustralian Research Council
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76567
dc.identifier.doi10.1016/j.heliyon.2022.e10692
dc.identifier.issn2405-8440
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.heliyon.2022.e10692
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72938
dc.issue.number9
dc.journal.titleHeliyon
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDARC DP170101039
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu536
dc.subject.keywordWater
dc.subject.keywordBwro
dc.subject.keywordDesalination
dc.subject.keywordRsm
dc.subject.keywordAnn
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleA complementary approach of response surface methodology and an artificial neural network for the optimization and prediction of low salinity reverse osmosis performance
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet139libre+CC.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format

Collections