Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On real Waring decompositions of real binary forms

dc.contributor.authorAnsola Fernández-Enriquez, Macarena
dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorZurro, M. A.
dc.date.accessioned2023-06-17T08:28:29Z
dc.date.available2023-06-17T08:28:29Z
dc.date.issued2019-11-19
dc.description.abstractThe Waring Problem over polynomial rings asks how to decompose a homogeneous polynomial p of degree d as a finite sum of d-th powers of linear forms. In this work we give an algorithm to obtain a real Waring decomposition of any given real binary form p of length at most its degree. In fact, we construct a semialgebraic family of Waring decompositions for p. Some examples are shown to highlight the difference between the real and the complex case.
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73225
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7228
dc.language.isoeng
dc.relation.projectIDMTM2014-55565
dc.relation.projectIDUCM (910444)
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordReal binary forms
dc.subject.keywordWaring decompositions
dc.subject.keywordSemialgebraic sets
dc.subject.ucmÁlgebra
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201 Álgebra
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn real Waring decompositions of real binary forms
dc.typejournal article
dcterms.references[1] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, Journal of Algebraic Geometry, 4 (1995). [2] E. Ballico and A. Bernardi, Real and complex rank for real symmetric tensors with low ranks, Algebra, Hindawi Publishing Corporation, 2013, Article ID 794054 (2013). 19 [3] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, vol. 10, Springer-Verlag Berlin Heidelberg, 2016. [4] M. R. Bender, J.-C. Faugère, L. Perret, and E. Tsigaridas, A superfast randomized algorithm to decompose binary forms, in Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, New York, NY, USA, 2016, ACM, pp. 79–86. [5] , A nearly optimal algorithm to decompose binary forms, 2018. [6] A. Bernardi and I. Carusotto, Algebraic geometry tools for the study of entanglement: an application to spin squeezed states, Journal of Physics A: Mathematical and Theoretical, 45 (2012), p. 105304. [7] G. Blekherman, Typical real ranks of binary forms, Found. Comput. Math., 15 (2015), pp. 793–798. [8] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry, vol. 36, Springer Science & Business Media, 2013. [9] M. Boij, E. Carlini, and A. Geramita, Monomials as sums of powers: the real binary case, P. Am. Math. Soc., 139 (2011), pp. 3039–3043. [10] C. B. Boyer, A History of Mathematics, New York : John Wiley & Sons, Inc.„ 1968. [11] J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl., 433 (2010), pp. 1851–1872. [12] L. Brustenga I Moncusí and S. K. Masuti, On the waring rank of binary forms: The binomial formula and a dihedral cover of rank two forms, arXiv preprint arXiv:1901.08320, (2019). [13] E. Carlini, M. Catalisano, and A. V. Geramita, The solution to the Waring problem for monomials and the sum of coprime monomials, J. Algebra, 370 (2012), pp. 5–14. [14] A. Causa and R. Re, On the maximum rank of a real binary form, Ann. Mat., 190 (2011), pp. 55–59. [15] P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 1254– 1279. [16] P. Comon, L.-H. Lim, Y. Qi, and K. Ye, Topology of tensors ranks, (2018). [17] P. Comon and B. Mourrain, Decomposition of quantics in sums of powers of linear forms, Signal Processing, 53 (1996), pp. 93–107. [18] P. Comon and G. Ottaviani, On the typical rank of real binary forms, Linear Multilinear A., 60 (2012), pp. 657–667. [19] R. Fröberg, S. Lundqvist, A. Oneto, and B. Shapiro, Algebraic stories from one and from the other pockets (2018). [20] I. García-Marco, P. Koiran, and T. Pecatte, Reconstruction algorithms for sums of affine powers, in Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’17, New York, NY, USA, 2017, ACM, pp. 317–324. [21] T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), pp. 455–500. [22] J. M. Landsberg, Tensors: Geometry and Applications, vol. 128 of Graduate Studies in Mathematics, American Mathematical Society, 2012. [23] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Ed. Birkhäuser, 1991. [24] K. Pratt, Faster algorithms via waring decompositions, 2018. [25] B. Reznick, Laws of inertia in higher degree binary forms, Proceedings of the American Mathematical Society, 138 (2010), pp. 815–826. [26] B. Reznick, Some new canonical forms for polynomials, Pac. J. Math., 266 (2013), pp. 185–220. [27] N. Tokcan, On the Waring rank of binary forms, Linear Algebra App., 524 (2017), pp. 250–262. [28] E. Waring and D. Weeks, Meditationes algebraicae: An English translation of the work of Edward Waring, Providence, R.I: American Mathematical Society, 1991.
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
diazcano_onReal.pdf
Size:
243.65 KB
Format:
Adobe Portable Document Format

Collections