Quantum cohomology of the moduli space of stable bundles over a Riemann surface.

dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T18:44:07Z
dc.date.available2023-06-20T18:44:07Z
dc.date.issued1999
dc.description.abstractWe determine the quantum cohomology of the moduli space MΣ of odd degree rank two stable vector bundles over a Riemann surface Σ of genus g ≥ 1. This work together with [10] complete the proof of the existence of an isomorphism QH*(MΣ) = HF*(Σ × S1).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educacion y Cultura
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21294
dc.identifier.doi10.1215/S0012-7094-99-09816-2
dc.identifier.issn0012-7094
dc.identifier.officialurlhttp://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1077228358
dc.identifier.relatedurlhttp://arxiv.org/
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58468
dc.issue.number3
dc.journal.titleDuke mathematical journal
dc.language.isoeng
dc.page.final540
dc.page.initial525
dc.publisherDUKE UNIV PRESS
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.cdu512.7
dc.subject.ucmGeometria algebraica
dc.subject.ucmTopología
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1210 Topología
dc.titleQuantum cohomology of the moduli space of stable bundles over a Riemann surface.
dc.typejournal article
dc.volume.number98
dcterms.referencesM. Bershadsky, A. Johansen, V. Sadov and C. Vafa,Topological reduction of 4D SYM to 2D o-models,Preprint, 1995. U. Desale and S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic curves,Inventiones Math. 38 1976, 161-185. S. K. Donaldson, Floer homology and algebraic geometry,Vector bundles in algebraic geometry,London Math. Soc. Lecture Notes Series, 208 Cambridge University Press,Cambridge, 1995,119-138. S. K. Donaldson and P. B. Kronheimer, The geometry of 4-manifolds, Oxford University Press,1990. G. Ellingsrud and L. Gottsche, Variation of moduli spaces and Donaldson invariants under change of polarisation,Journal reine angew. Math. 467 1995, 1-49. A. D. King and P. E. Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve,Liverpool Preprint, 1994. P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson’s polynomial invariants, Jour. Differential Geometry, 41 1995, 573-734. D. McDuff and D. A. Salamon, J-holomorphic curves and quantum cohomology, Preprint. V. Muñoz, Wall-crossing formulae for algebraic surfaces with q > 0, alg-geom/9709002. V. Muñoz, Ring structure of the Floer cohomology of Σ × S1,dg-ga/9710029. S. Piunikhin, Quantum and Floer cohomology have the same ring structure, MIT Preprint, 1994. S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Warwick Preprint,1995. Z. Qin, Moduli of stable sheaves on ruled surfaces and their Picard groups, Jour. Reine ange Math. 433 1992, 201-219. Y. Ruan, Topological sigma model and Donaldson type invariants in Gromov theory, Duke Math.Jour. 83 1996, 461-500. Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, Jour. Diff. Geom. 42 1995, 259-367. B. Siebert, An update on (small) quantum cohomology,Preprint, 1997. B. Siebert and G. Tian, Recursive relations for the cohomology ring of moduli spaces of stable bundles, Proceedings of 3rd Gokova Geometry-Topology Conference 1994. B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, submitted to Duke Math. Journal. M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles,Jour. Differential Geometry, 35 1992, 131-150.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz66libre.pdf
Size:
194.79 KB
Format:
Adobe Portable Document Format

Collections