Quantum cohomology of the moduli space of stable bundles over a Riemann surface.
| dc.contributor.author | Muñoz, Vicente | |
| dc.date.accessioned | 2023-06-20T18:44:07Z | |
| dc.date.available | 2023-06-20T18:44:07Z | |
| dc.date.issued | 1999 | |
| dc.description.abstract | We determine the quantum cohomology of the moduli space MΣ of odd degree rank two stable vector bundles over a Riemann surface Σ of genus g ≥ 1. This work together with [10] complete the proof of the existence of an isomorphism QH*(MΣ) = HF*(Σ × S1). | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Educacion y Cultura | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/21294 | |
| dc.identifier.doi | 10.1215/S0012-7094-99-09816-2 | |
| dc.identifier.issn | 0012-7094 | |
| dc.identifier.officialurl | http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1077228358 | |
| dc.identifier.relatedurl | http://arxiv.org/ | |
| dc.identifier.relatedurl | http://projecteuclid.org/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/58468 | |
| dc.issue.number | 3 | |
| dc.journal.title | Duke mathematical journal | |
| dc.language.iso | eng | |
| dc.page.final | 540 | |
| dc.page.initial | 525 | |
| dc.publisher | DUKE UNIV PRESS | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 515.1 | |
| dc.subject.cdu | 512.7 | |
| dc.subject.ucm | Geometria algebraica | |
| dc.subject.ucm | Topología | |
| dc.subject.unesco | 1201.01 Geometría Algebraica | |
| dc.subject.unesco | 1210 Topología | |
| dc.title | Quantum cohomology of the moduli space of stable bundles over a Riemann surface. | |
| dc.type | journal article | |
| dc.volume.number | 98 | |
| dcterms.references | M. Bershadsky, A. Johansen, V. Sadov and C. Vafa,Topological reduction of 4D SYM to 2D o-models,Preprint, 1995. U. Desale and S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic curves,Inventiones Math. 38 1976, 161-185. S. K. Donaldson, Floer homology and algebraic geometry,Vector bundles in algebraic geometry,London Math. Soc. Lecture Notes Series, 208 Cambridge University Press,Cambridge, 1995,119-138. S. K. Donaldson and P. B. Kronheimer, The geometry of 4-manifolds, Oxford University Press,1990. G. Ellingsrud and L. Gottsche, Variation of moduli spaces and Donaldson invariants under change of polarisation,Journal reine angew. Math. 467 1995, 1-49. A. D. King and P. E. Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve,Liverpool Preprint, 1994. P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson’s polynomial invariants, Jour. Differential Geometry, 41 1995, 573-734. D. McDuff and D. A. Salamon, J-holomorphic curves and quantum cohomology, Preprint. V. Muñoz, Wall-crossing formulae for algebraic surfaces with q > 0, alg-geom/9709002. V. Muñoz, Ring structure of the Floer cohomology of Σ × S1,dg-ga/9710029. S. Piunikhin, Quantum and Floer cohomology have the same ring structure, MIT Preprint, 1994. S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Warwick Preprint,1995. Z. Qin, Moduli of stable sheaves on ruled surfaces and their Picard groups, Jour. Reine ange Math. 433 1992, 201-219. Y. Ruan, Topological sigma model and Donaldson type invariants in Gromov theory, Duke Math.Jour. 83 1996, 461-500. Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, Jour. Diff. Geom. 42 1995, 259-367. B. Siebert, An update on (small) quantum cohomology,Preprint, 1997. B. Siebert and G. Tian, Recursive relations for the cohomology ring of moduli spaces of stable bundles, Proceedings of 3rd Gokova Geometry-Topology Conference 1994. B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, submitted to Duke Math. Journal. M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles,Jour. Differential Geometry, 35 1992, 131-150. | |
| dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1


