Publication:
Discrete Levy transformations and Casorati determinant solutions of quadrilateral lattices

dc.contributor.authorLiu, Yong-Jun
dc.contributor.authorMañas Baena, Manuel
dc.date.accessioned2023-06-20T20:09:18Z
dc.date.available2023-06-20T20:09:18Z
dc.date.issued1998-03-02
dc.description©1998 Published by Elsevier Science B.V.
dc.description.abstractSequences of discrete Levy and adjoint Levy transformations for multidimensional quadrilateral lattices are studied. After a suitable number of iterations we show how all the relevant geometrical features of the transformed quadrilateral lattice can be expressed in terms of multi-Casorati determinants. As an example we dress the Cartesian lattice.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32501
dc.identifier.citation[1] L. V. Bogdanov and B. G. Konopelchenko, J. Phys. A: Math. & Gen. 28 (1995) L173. [2] J. Cieśliński, A. Doliwa and P. M. Santini, The Integrable Discrete Analogous of Orthogonal Coordinate Systems are Multidimensional Circular Lattices, to appear in Phys. Lett. A (1997). [3] G. Darboux, Le¸cons sur la théorie générale des surfaces IV, Liv. VIII, Chap. XII, Gauthier – Villars, Paris (1896). Reprinted by Chelsea Publishing Company, New York (1972). [4] A. Doliwa, S. V. Manakov and P. M. Santini, ¯∂-Reductions of the Multidimensional Quadrilateral Lattice I: The Multidimensional Circular Lattice, to appear (1997). [5] A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina and P. M. Santini, The Miwa Transformation and τ -Functions for Quadrilateral Lattices. Geometrical Interpretation, to appear (1997). [6] A. Doliwa and P. M. Santini, Multidimesional Quadrilateral Lattices are Integrable, to appear in Phys. Lett. A (1997). [7] A. Doliwa, P. M. Santini and M. Mañas, Transformations for Quadrilateral Lattices, to appear (1997). [8] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston (1909). [9] N.C. Freeman and J.J.C. Nimmo, Phys. Lett. 95 A (1983) 1; Phys. Lett. 95 A (1983) 4; J. J. C. Nimmo, Phys. Lett. 99 A (1983) 281; N.C. Freeman, IMA J. Appl. Math. 32 (1984) 125. [10] E. S. Hammond, Ann. Math. 22 (1920) 238. [11] B. G. Konopelchenko and W. K. Shief, Lamé and Zakharov-Manakov systems: Combescure, Darboux and Bäcklund transformations, Preprint AM93/9, UNSW (1993). [12] L. Levy, J. l’École Polytecnique 56 (1886) 63. [13] Q. P. Liu and M. Mañas, Sequences of Levy transformations and multiWro´nski determinant solutions of the Darboux system, dg-ga/9707013 (1997). [14] M. Mañas, A. Doliwa and P. M. Santini, Phys. Lett. 232 A (1997) 365. [15] Y. Ohta, R. Hirota, S. Tsujimoto and T. Imai, J. Phys. Soc. Japan 62 (1993) 1872. [16] O. Schreier and E. Sperner, Introduction to Modern Algebra and Matrix Theory, Chelsea Publishing Company, New York (1951).
dc.identifier.doi10.1016/S0375-9601(97)00933-X
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0375-9601(97)00933-X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/solv-int/9709007
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59697
dc.issue.number3
dc.journal.titlePhysics letters A
dc.language.isoeng
dc.page.final166
dc.page.initial159
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordSoliton-solutions
dc.subject.keywordEquations
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleDiscrete Levy transformations and Casorati determinant solutions of quadrilateral lattices
dc.typejournal article
dc.volume.number239
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas40preprint.pdf
Size:
125.32 KB
Format:
Adobe Portable Document Format
Collections