Crossover to nearly constant loss in ac conductivity of highly disordered pyrochlore-type ionic conductors
dc.contributor.author | Díaz Guillén, M. R. | |
dc.contributor.author | Díaz Guillén, J. A. | |
dc.contributor.author | Fuentes, A. F. | |
dc.contributor.author | Santamaría Sánchez-Barriga, Jacobo | |
dc.contributor.author | León Yebra, Carlos | |
dc.date.accessioned | 2023-06-20T03:51:32Z | |
dc.date.available | 2023-06-20T03:51:32Z | |
dc.date.issued | 2010-11-18 | |
dc.description | © 2010 The American Physical Society. This work has been supported by Mexican CONACYT Grant No. SEP-2003-C02-44075, by Spanish MICINN under Projects No. MAT2008-6517-C02 and CONSOLIDER INGENIO 2010 No. CSD2009-00013 IMAGINE, and by CAM under PHAMA Grant No. S2009/MAT-1756. M.R.D.-G. thanks CONACYT for a grant to stay at Universidad Complutense. | |
dc.description.abstract | We report on ac conductivity measurements of oxide ion conductors with composition Gd_(2)(Zr_(y)Ti_(1−y)_(2)O_(7), at temperatures between 170 and 500 K and in the frequency range 1 Hz–3MHz, and show that a crossover from a sublinear power law to a linear frequency dependence (or nearly constant loss behavior) in the ac conductivity can be clearly observed in a wide temperature range. This crossover is found to be thermally activated, and its activation energy ENCL to be much lower than the activation energy Edc for the dc conductivity. We also found that the values of ENCL are almost independent of composition, and therefore of the concentration of mobile oxygen vacancies, unlike those of Edc. Moreover, for each composition, the values of ENCL=0.67 +/- 0.04 are very similar to those estimated for the energy barrier for the ions to leave their cages, Ea=0.69 +/- 0.05. These results support that the nearly constant loss behavior, ubiquitous in ionic conductors, is originated from caged ion dynamics. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Ministerio de Economia y Competitividad (MINECO) | |
dc.description.sponsorship | Mexican CONACYT | |
dc.description.sponsorship | CONSOLIDER INGENIO 2010 | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30271 | |
dc.identifier.doi | 10.1103/PhysRevB.82.174304 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevB.82.174304 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44569 | |
dc.issue.number | 17 | |
dc.journal.title | Physical review B | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | PHAMA-CM (S2009/MAT-1756) | |
dc.relation.projectID | MAT2008-6517-C02 | |
dc.relation.projectID | SEP-2003-C02-44075 | |
dc.relation.projectID | CSD2009-00013 IMAGINE | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Electrical relaxation | |
dc.subject.keyword | Glasses | |
dc.subject.keyword | Melts | |
dc.subject.keyword | Behavior | |
dc.subject.keyword | Solids | |
dc.subject.keyword | Temperature | |
dc.subject.keyword | Frequency | |
dc.subject.keyword | Crystals | |
dc.subject.keyword | Dynamics | |
dc.subject.keyword | Systems. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Crossover to nearly constant loss in ac conductivity of highly disordered pyrochlore-type ionic conductors | |
dc.type | journal article | |
dc.volume.number | 82 | |
dcterms.references | 1) W. K. Lee, J. F. Liu, -A. S. Nowick, Phys. Rev. Lett., 67, 1559, 1991. 2) J. Wong, C. A. Angell, Glass Structure by Spectroscopy Dekker, New York, 1976. 3) C. H. Hsieh, H. Jain, J. Non-Cryst. Solids, 203, 293, 1996. 4) K. L. Ngai, J. Chem. Phys., 110, 10576, 1999. 5) C. Cramer, K. Funke, T. Saatkamp, Philos. Mag. B, 71, 701, 1995. 6) D. L. Sidebottom, P. F. Green, R. K. Brow, Phys. Rev. Lett., 74, 5068, 1995. 7) A. S. Nowick, A. V. Vaysleb, W. Liu, Solid State Ionics, 105, 121, 1998. 8) H. Jain, S. Krishnaswami, Solid State Ionics, 105, 129, 1998. 9) C. León, M. L. Lucía, J. Santamaría, F. Sánchez-Quesada, Phys. Rev. B, 57, 41, 1998. 10) C. León, K. L. Ngai, A. Rivera, Phys. Rev. B, 69, 134303, 2004. 11) C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaría, K. L. Ngai, Phys. Rev. Lett., 86, 1279, 2001. 12) A. Rivera, C. León, C. P. E. Varsamis, G. D. Chryssikos, K. L. Ngai, C. M. Roland, L. J. Buckley, Phys. Rev. Lett., 88, 125902, 2002. 13) A. Rivera, C. León, J. Sanz, J. Santamaría, C. T. Moynihan, K. L. Ngai, Phys. Rev. B, 65, 224302, 2002. 14) K. L. Ngai, C. León, Phys. Rev. B, 66, 064308, 2002. 15) K. Funke, P. Singh, R. D. Banhatti, Phys. Chem. Chem. Phys., 9, 5582, 2007. 16) J. R. Macdonald, Phys. Rev. B, 66, 064305, 2002. 17) W. Dieterich, P. Maass, Chem. Phys,. 284, 439, 2002. 18) B. Roling, C. Martiny, S. Murugavel, Phys. Rev. Lett., 87, 085901, 2001. 19) J. Habasaki, K. L. Ngai, Y. Hiwatari, Phys. Rev. E, 66, 021205, 2002. 20) D. M. Laughman, R. D. Banhatti, K. Funke, Phys. Chem. Chem. Phys., 11, 3158, 2009. 21) P. K. Moon, H. L. Tuller, Solid State Ionics, 28-30, 470, 1988. 22) J. Chen, J. Lian, L. M. Wang, R. C. Ewing, R. G. Wang, W. Pan, Phys. Rev. Lett., 88, 105901, 2002. 23) P. K. Moon, H. L. Tuller, in Solid State Ionics, MRS Symposia Proceedings No. 135, edited by G. Nazri, R. A. Huggins, and D. F. Shriver Materials Research Society, Pittsburgh, 1989, p. 149. 24) R. E. Williford, W. J. Weber, R. Devanathan, J. D. Gale, J. Electroceram., 3, 409, 1999. 25) K. J. Moreno, G. Mendoza-Suárez, A. F. Fuentes, J. García Barriocanal, C. León, and J. Santamaría, Phys. Rev. B, 71, 132301, 2005. 26) M. R. Díaz-Guillén, K. J. Moreno, J. A. Díaz-Guillén, A. F. Fuentes, K. L. Ngai, J. García-Barriocanal, J. Santamaría, C. León, Phys. Rev. B, 78, 104304, 2008. 27) K. L. Ngai, G. N. Greaves, C. T. Moynihan, Phys. Rev. Lett., 80, 1018, 1998. 28) A value of Edc=1.13 eV was reported in Ref. 26. The difference with the value found here is due to the different temperature range in both works since there is a slight and gradual decrease in the dc activation energy when the temperature is increased above 300 °C. This behavior has been previously reported in Ref. 27 as a universal feature of ionic conductors. 29) K. L. Ngai, Comments Solid State Phys., 9, 127, 1979. 30) K. Y. Tsang, K. L. Ngai, Phys. Rev. E, 56, R17, 1997. 31) C. T. Moynihan, Solid State Ionics, 105, 175, 1998. 32) K. L. Ngai, C. León, Phys. Rev. B, 60, 9396, 1999. 33) I. M. Hodge, K. L. Ngai, C. T. Moynihan, J. Non-Cryst. Solids, 351, 104, 2005. 34) For a review of various representations of conductivity relaxation data see C. T. Moynihan, J. Non-Cryst. Solids, 172-174, CRO, 1395, 1994 --- 203, 359, 1996. 35) C. Heremans, B. J. Wuensch, J. K. Stalick, E. Prince, J. Solid State Chem., 117, 108, 1995. 36) A. S. Nowick, B. S. Lim, Phys. Rev. B, 63, 184115, 2001. 37) K. S. Gilroy, W. A. Phillips, Philos. Mag. B, 43, 735, 1981. 38) H. Jain, S. Krishnaswami, O. Kanert, J. Non-Cryst. Solids ,307-310, 1017, 2002. 39) W. Dieterich, P. Maass, Solid State Ionics, 180, 446, 2009. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 75fafcfc-6c46-44ea-b87a-52152436d1f7 | |
relation.isAuthorOfPublication | 213f0e33-39f1-4f27-a134-440d5d16a07c | |
relation.isAuthorOfPublication.latestForDiscovery | 75fafcfc-6c46-44ea-b87a-52152436d1f7 |
Download
Original bundle
1 - 1 of 1