Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Lump solitons in a higher-order nonlinear equation in 2 + 1 dimensions

dc.contributor.authorDíaz García, Elena
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-18T05:41:57Z
dc.date.available2023-06-18T05:41:57Z
dc.date.issued2016-06-20
dc.description©2016 American Physical Society. This research was supported in part by FEDER, MINECO (Project No. MAT2013-46308-C2), and Junta de Castilla y Leon (Project No. SA226U13).
dc.description.abstractWe propose and examine an integrable system of nonlinear equations that generalizes the nonlinear Schr ̈ odinger equation to 2 + 1 dimensions. This integrable system of equations is a promising starting point to elaborate more accurate models in nonlinear optics and molecular systems within the continuum limit. The Lax pair for the system is derived after applying the singular manifold method. We also present an iterative procedure to construct the solutions from a seed solution. Solutions with one-, two-, and three-lump solitons are thoroughly discussed.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipJunta de Castilla y León
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40862
dc.identifier.doi10.1103/PhysRevE.93.062219
dc.identifier.issn2470-0045
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.93.062219
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23082
dc.journal.titlePhysical review E
dc.language.isoeng
dc.page.final1
dc.page.initial062219
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2013-46308-C2
dc.relation.projectIDSA226U13
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.cdu517
dc.subject.cdu544
dc.subject.keywordLump solitons
dc.subject.keywordNonlinear equations
dc.subject.ucmFísica del estado sólido
dc.subject.ucmFísica matemática
dc.subject.ucmProgramación de ordenadores (Física)
dc.subject.ucmQuímica física (Física)
dc.subject.ucmAnálisis matemático
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco2211 Física del Estado Sólido
dc.subject.unesco2210 Química Física
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleLump solitons in a higher-order nonlinear equation in 2 + 1 dimensions
dc.typejournal article
dc.volume.number93
dcterms.references[1] A. S. Davydov and N. I. Kislukha, Phys. Stat. Sol. (b) 59, 465 (1973). [2] P. L. Christiansen and A. C. Scott (eds.), NATO ASI Series (Plenum Press, New York, 1990). [3] M. Daniel and K. Deepamala, Physica A 221, 241–255 (1995). [4] M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133, 483 (1988). [5] A. Ankiewicz, Y. Wang, S. Wabnitz, and N. Akhmediev, Phys. Rev. E 89, 012907 (2014). [6] A. Ankiewicz and N. Akhmediev, Phys. Lett. A 378, 358 (2014). [7] A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Phys. Rev. E 81, 046602 (2010). [8] R. Hirota, J. Math. Phys. 14, 805 (1973). [9] L. Wei, Q. De-Qin, and H. Jing-Song, Comm. Theor. Phys. 63, 525 (2015). [10] Y. Yang, X. Wang, and Z. Yan, Nonlin. Dynam. 81, 833 (2015). [11] J. S. Hesthaven, J. J. Rasmussen, L. Berg ́ e, and J. Wyller, J. Phys. A: Math. Gen. 30, 8207 (1997). [12] A. Ankiewicz, J. M. Soto-Crespo, M. A. Chowdhury, and N. Akhmediev, J. Opt. Soc. Am. B 30, 87 (2013). [13] F. Calogero, Lett. Nuovo Cimento 14, 443 (1975). [14] V. E. Zakharov, The Inverse Scattering Method, Topics in Current Physics (Springer, Berlin, 1980). [15] P. G. Est ́ evez and G. A. Hern ́aez, J. Nonlinear Math. Phys. 8, 106 (2001). [16] P. G. Est ́ evez, J. Prada, and J. Villarroel, J. Phys. A: Math. Theor. 40, 7213 (2007). [17] J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, Phys. Rev. E 87, 052914 (2013). [18] J. Villarroel, J. Prada, and P. G. Est ́evez, Stud. Appl. Math. 122, 395 (2009). [19] J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevE.93.062219.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format

Collections