Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Productos Estrella y Ecuación Cuántica Triangular de Yang-Baxter

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2002

Defense date

1995

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

Se demuestran teoremas enunciados por v.g. Drinfeld sobre la relacion entre la ecuación cuántica triangular de yang-baxter (ectyb) y los productos estrella invariantes sobre un grupo de lie g con estructura de poisson invariante. Se enuncia y prueba un teorema básico que pone de manifiesto el contenido cohomologico de la ectyb. La obstrucción a la prolongación al orden k+1 de un producto estrella invariante f(x;y) al orden k, es la clase de cohomologia (invariante de hochschild) correspondiente al termino de orden k+1 de la ectyb construida a partir de s(x;y)=f-1(y;x)f(x;y). Se hace explícita la construcción de v.g. Drinfeld de un producto estrella invariante sobre un grupo de lie g con estructura simpléctica invariante beta1, a partir de un 2-cociclo beta h= beta 1+beta 2 h+beta 3 h2 + ... Del álgebra de lie de g. Se muestra que corresponde a una generalización del procedimiento para obtener un producto de moyal sobre (r2(; beta1) a partir de la ley de grupo formal del campbell-hausdorff del álgebra de lie de g. Haciendo uso del teorema sobre el contenido cohomologico de la ectyb, se demuestra que todo producto estrella invariante sobre (g; beta 1) es equivalente a uno obtenido por el procedimiento anterior a partir de un 2-cociclo beta h. Se estudia la equivalencia entre productos estrella definidos por cociclos en la misma clase de cohomologia de hochschild. También se estudian las nociones de grupo de lie-poisson, bialgebra de lie y matriz-r clásica, poniéndose de manifiesto la relacion entre estas ultimas y las bialgebras de lie exactas. En particular se demuestran los resultados enunciados por semenov-tian-shansky que se refieren a la existencia de soluciones, por el método de factorizacion, de las ecuaciones del movimiento, en el caso de hamiltonianos de casimir con respecto a la estructura de poisson que sobre el dual g* define una solución de la ecuación modificada de yang-baxter y en el caso de hamiltonianos centrales con respecto a la estructura de poisson que sobre el grupo g define una solución de la ecuación modificada de yang-baxter.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections