Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Game Learning Analytics: Blending Visual and Data Mining Techniques to Improve Serious Games and to Better Understand Player Learning

dc.contributor.authorAlonso Fernández, Cristina
dc.contributor.authorCalvo Morata, Antonio
dc.contributor.authorFreire Morán, Manuel
dc.contributor.authorMartínez Ortiz, Iván
dc.contributor.authorFernández Manjón, Baltasar
dc.date.accessioned2024-02-06T14:17:01Z
dc.date.available2024-02-06T14:17:01Z
dc.date.issued2022-12-16
dc.description.abstractGame learning analytics (GLA) comprise the collection, analysis, and visualization of player interactions with serious games. The information gathered from these analytics can help us improve serious games and better understand player actions and strategies, as well as improve player assessment. However, the application of analytics is a complex and costly process that is not yet generalized in serious games. Using a standard data format to collect player interactions is essential: the standardization allows us to simplify and systematize every step in developing tools and processes compatible with multiple games. In this paper, we explore a combination of 1) an exploratory visualization tool that analyzes player interactions in the game and provides an overview of their actions, and 2) an assessment approach, based on the collection of interaction data for player assessment. We describe some of the different opportunities offered by analytics in game-based learning, the relevance of systematizing the process by using standards and game-independent analyses and visualizations, and the different techniques (visualizations, data mining models) that can be applied to yield meaningful information to better understand learners’ actions and results in serious games.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.18608/jla.2022.7633
dc.identifier.issn1929-7750
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99557
dc.journal.titleJournal of Learning Analytics
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmSoftware
dc.subject.ucmEducación
dc.subject.unesco1203.10 Enseñanza Con Ayuda de Ordenador
dc.titleGame Learning Analytics: Blending Visual and Data Mining Techniques to Improve Serious Games and to Better Understand Player Learning
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication3e9733bf-a280-423e-9e16-0689893aa498
relation.isAuthorOfPublication8fe77cd0-8c60-4afc-9c42-b649fd114502
relation.isAuthorOfPublication31da3433-5b95-45a0-badf-a639e7f3e4b8
relation.isAuthorOfPublicationdea963b6-c09b-4f13-a535-76661dab0d5d
relation.isAuthorOfPublication7aa3aa1c-0f71-4c2f-8f82-275aa14354b1
relation.isAuthorOfPublication.latestForDiscovery3e9733bf-a280-423e-9e16-0689893aa498

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
draft_10.18608_jla.2022.7633 .pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format

Collections