A quantum interior-point predictor-corrector algorithm for linear programming
dc.contributor.author | Casares, P. A. M. | |
dc.contributor.author | Martín-Delgado Alcántara, Miguel Ángel | |
dc.date.accessioned | 2023-06-16T15:27:03Z | |
dc.date.available | 2023-06-16T15:27:03Z | |
dc.date.issued | 2020-11-06 | |
dc.description | © 2020 IOP Publishing Ltd. We acknowledge financial support from the Spanish MINECO Grants FIS2015-67411P, and the CAM research consortium QUITEMAD-CM, Grant No. S2018/TCS-4342. The research of MAM-D has been partially supported by the U.S. Army Research Office through Grant No. W911NF-14-1-0103. PAMC thanks the support of a FPU MECD Grant. | |
dc.description.abstract | We introduce a new quantum optimization algorithm for dense linear programming problems, which can be seen as the quantization of the interior point predictor-corrector algorithm [1] using a quantum linear system algorithm [2]. The (worst case) work complexity of our method is, up to polylogarithmic factors, O(L root n(n+m)(parallel to M parallel to) over bar (F) (kappa)over bar> over bar epsilon(-2)) for n the number of variables in the cost function,mthe number of constraints,epsilon(-1)the target precision,Lthe bit length of the input data, (parallel to M parallel to) over bar (F) over bar <ian upper bound to the Frobenius norm of the linear systems of equations that appear, <(parallel to M parallel to)over bar>(F), and (kappa) over bar an upper bound to the condition number kappa of those systems of equations. This represents a quantum speed-up in the number n of variables in the cost function with respect to the comparable classical interior point algorithms when the initial matrix of the problem A is dense: if we substitute the quantum part of the algorithm by classical algorithms such as conjugate gradient descent, that would mean the whole algorithm has complexity O(L root n(n + m)(2) (kappa) over bar log(epsilon(-1))), or with exact methods, at least O(L root n(n + m)(2.373)). Also, in contrast with any quantum linear system algorithm, the algorithm described in this article outputs a classical description of the solution vector, and the value of the optimal solution. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/62912 | |
dc.identifier.doi | 10.1088/1751-8121/abb439 | |
dc.identifier.issn | 1751-8113 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/1751-8121/abb439 | |
dc.identifier.relatedurl | https://iopscience.iop.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/6703 | |
dc.issue.number | 44 | |
dc.journal.title | Journal of physics A: Mathematical and theoretical | |
dc.language.iso | eng | |
dc.publisher | IOP Publishing Ltd | |
dc.relation.projectID | FIS2015-67411P | |
dc.relation.projectID | QUITEMAD-CM (S2018/TCS-4342) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Computation | |
dc.subject.ucm | Física (Física) | |
dc.subject.unesco | 22 Física | |
dc.title | A quantum interior-point predictor-corrector algorithm for linear programming | |
dc.type | journal article | |
dc.volume.number | 53 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1cfed495-7729-410a-b898-8196add14ef6 | |
relation.isAuthorOfPublication.latestForDiscovery | 1cfed495-7729-410a-b898-8196add14ef6 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Martín Delgado Alcántara MÁ 126 preprint.pdf
- Size:
- 940.16 KB
- Format:
- Adobe Portable Document Format