Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A quantum interior-point predictor-corrector algorithm for linear programming

dc.contributor.authorCasares, P. A. M.
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.date.accessioned2023-06-16T15:27:03Z
dc.date.available2023-06-16T15:27:03Z
dc.date.issued2020-11-06
dc.description© 2020 IOP Publishing Ltd. We acknowledge financial support from the Spanish MINECO Grants FIS2015-67411P, and the CAM research consortium QUITEMAD-CM, Grant No. S2018/TCS-4342. The research of MAM-D has been partially supported by the U.S. Army Research Office through Grant No. W911NF-14-1-0103. PAMC thanks the support of a FPU MECD Grant.
dc.description.abstractWe introduce a new quantum optimization algorithm for dense linear programming problems, which can be seen as the quantization of the interior point predictor-corrector algorithm [1] using a quantum linear system algorithm [2]. The (worst case) work complexity of our method is, up to polylogarithmic factors, O(L root n(n+m)(parallel to M parallel to) over bar (F) (kappa)over bar> over bar epsilon(-2)) for n the number of variables in the cost function,mthe number of constraints,epsilon(-1)the target precision,Lthe bit length of the input data, (parallel to M parallel to) over bar (F) over bar <ian upper bound to the Frobenius norm of the linear systems of equations that appear, <(parallel to M parallel to)over bar>(F), and (kappa) over bar an upper bound to the condition number kappa of those systems of equations. This represents a quantum speed-up in the number n of variables in the cost function with respect to the comparable classical interior point algorithms when the initial matrix of the problem A is dense: if we substitute the quantum part of the algorithm by classical algorithms such as conjugate gradient descent, that would mean the whole algorithm has complexity O(L root n(n + m)(2) (kappa) over bar log(epsilon(-1))), or with exact methods, at least O(L root n(n + m)(2.373)). Also, in contrast with any quantum linear system algorithm, the algorithm described in this article outputs a classical description of the solution vector, and the value of the optimal solution.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62912
dc.identifier.doi10.1088/1751-8121/abb439
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1751-8121/abb439
dc.identifier.relatedurlhttps://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6703
dc.issue.number44
dc.journal.titleJournal of physics A: Mathematical and theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDFIS2015-67411P
dc.relation.projectIDQUITEMAD-CM (S2018/TCS-4342)
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordComputation
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleA quantum interior-point predictor-corrector algorithm for linear programming
dc.typejournal article
dc.volume.number53
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery1cfed495-7729-410a-b898-8196add14ef6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Delgado Alcántara MÁ 126 preprint.pdf
Size:
940.16 KB
Format:
Adobe Portable Document Format

Collections