Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum hall effect

dc.contributor.authorAmado, M.
dc.contributor.authorMalyshev, Andrey
dc.contributor.authorSedrakyan, A.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T03:45:33Z
dc.date.available2023-06-20T03:45:33Z
dc.date.issued2011-08-03
dc.description© 2011 American Physical Society. A. S. acknowledges discussions with I. Gruzberg and V. Kagalovsky and the hospitality of the Universidad Complutense de Madrid, where the major part of the work has been done. A. V. M. and F. D.-A. thank K. Slevin, T. Ohtsuki, and R. Römer for fruitful discus- sions. Part of the calculations were performed at the Aula Sun Cluster and the Clúster de Ca´lculo de Alta Capacidad para Técnicas Físicas, funded by the UCM and the EU under the FEDER program. Work in Madrid was supported by MICINN (Projects Mosaico and MAT2010-17180)
dc.description.abstractWe calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index v = 2.616 +/- 0.014. We observe an increase of the critical exponent v with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUCM
dc.description.sponsorshipEU-FEDER program
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27192
dc.identifier.doi10.1103/PhysRevLett.107.066402
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.107.066402
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44389
dc.issue.number6
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2010-17180
dc.relation.projectIDMOSAICO
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordAnderson Transition
dc.subject.keywordScaling Theory
dc.subject.keywordField-Theory
dc.subject.keywordPercolation
dc.subject.keywordConductance
dc.subject.keywordSystems
dc.subject.keywordLimit
dc.subject.ucmFísica de materiales
dc.titleNumerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum hall effect
dc.typejournal article
dc.volume.number107
dcterms.references[1] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983); Nucl. Phys. B240, 30 (1984); B240, 49 (1984); B240, 71 (1984). [2] J. Chalker and P. Coddington, J. Phys. C 21, 2665 (1988). [3] B. Huckenstein, Rev. Mod. Phys. 67, 357 (1995). [4] H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 50, 14 609 (1994). [5] D.-H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993). [6] D.-H. Lee, Phys. Rev. B 50, 10 788 (1994). [7] D.-H. Lee and Z. Wang, Philos. Mag. Lett. 73, 145 (1996). [8] M. R. Zirnbauer, Ann. Phys. (Berlin) 506, 513 (1994); N. Read (private communication to M. R. Zirnbauer); see Ref. [56] there. [9] M. R. Zirnbauer, J. Math. Phys. (N.Y.) 38, 2007 (1997). [10] M. J. Bhaseen, I. I. Kogan, O. A. Soloviev, N. Taniguchi, and A. M. Tsvelik, Nucl. Phys. B580, 688 (2000); A. M. Tsvelik, Phys. Rev. B 75, 184201 (2007). [11] A. LeClair, Phys. Rev. B 64, 045329 (2001). [12] S. Cho and M. P. A. Fisher, Phys. Rev. B 55, 1025 (1997). [13] A. Sedrakyan, Phys. Rev. B 68, 235329 (2003). [14] K. Slevin and T. Ohtsuki, Phys. Rev. B 80, 041304(R) (2009). [15] H. Obuse, A. R. Subramaniam, A. Furusaki, I. A. Gruzberg, and A. W. W. Ludwig, Phys. Rev. Lett. 101, 116802 (2008). [16] F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev. Lett. 101, 116803 (2008). [17] A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983). [18] V. N. Tutubalin, Theory Probab. Appl. 10, 15 (1965). [19] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981). [20] K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997); 82, 382 (1999). [21] F. Milde, R. A. Roömer, M. Schreiber, and V. Uski, Eur. Phys. J. B 15, 685 (2000). [22] A. Eilmes, A. M. Fisher, and R. Römer, Phys. Rev. B 77, 245117 (2008). [23] W. Press, B. Flannery, and S. Teukolsky, Numerical Recipes in Fortran (Cambridge University Press, Cambridge, England, 1992), Chap. 15. [24] A. G. Galstyan and M. E. Raikh, Phys. Rev. B 56, 1422 (1997). [25] P. Cain, R. Ro¨mer, and M. E. Raikh, Phys. Rev. B 67, 075307 (2003). [26] W. Li, G. A. Csa´thy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 206807 (2005). [27] W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009).
dspace.entity.typePublication
relation.isAuthorOfPublicationb2abe0ef-0417-4f43-8dce-55d3205e22ec
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryb2abe0ef-0417-4f43-8dce-55d3205e22ec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame16libre.pdf
Size:
238.64 KB
Format:
Adobe Portable Document Format

Collections