Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surface dielectric tunnel barrier induced by Mn doping in SnO_2 micro- and nanostructures

dc.contributor.authorMaestre Varea, David
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorHerrera, Manuel
dc.date.accessioned2023-06-17T13:19:38Z
dc.date.available2023-06-17T13:19:38Z
dc.date.issued2018-10-10
dc.description©2018 Wiley The work was supported by MINECO/FEDER/M-ERA.Net. Cofund projects: MAT 2016-81720-REDC, MAT 2015-65274-R, and PCIN-2017-106. MHZ thanks for the financial support by PAPIIT-UNAM IN101917 project. The authors are grateful to Prof. Javier Piqueras for early attracting our research efforts to the fascinating world of the electronic microscopy related techniques and for assisting us as a dedicated mentor.
dc.description.abstractElectrical properties of undoped and Mn doped SnO2 microplates and rods are studied by electron beam induced current (EBIC) in a scanning electron microscope (SEM), and I-V curves acquired at room temperature. AFM measurements reveal the formation of numerous terraces at the (-101) surface of the analyzed Mn-doped SnO2 microplates, which also exhibit high carrier recombination processes at their central region, as confirmed by combined EBIC and cathodoluminescence (CL) measurements. A diffusion length for minority carriers about 205nm is obtained by EBIC measurements. Different electrical conduction mechanisms, such as Fowler-Nordheim, direct tunneling and Poole-Frenkel, are evaluated in the electrical analysis of the samples. Mn doped microplates show lower conductivity than the undoped microds. Moreover the height of the surface tunnel barrier is increased by Mn doping, as confirmed by the analysis of the I-V curves acquired under transversal configuration. A value of the relative dielectric constant E-r about 7.3 is estimated for the probed SnO2 microstructures.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipPAPIIT-UNAM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/51186
dc.identifier.doi10.1002/pssa.201800275
dc.identifier.issn1862-6300
dc.identifier.officialurlhttp://dx.doi.org/10.1002/pssa.201800275
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13086
dc.issue.number19
dc.journal.titlePhysica status solidi A-applications and materials science
dc.language.isoeng
dc.publisherWiley
dc.relation.projectID(MAT 2016-81720-REDC; MAT 2015-65274-R; PCIN-2017-106)
dc.relation.projectIDIN101917
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordBeam-induced current
dc.subject.keywordGrain-boundaries
dc.subject.keywordOxide
dc.subject.keywordPhotoluminescence
dc.subject.keywordNanowires
dc.subject.keywordFilms
dc.subject.keywordDoping
dc.subject.keywordElectron beam induced current
dc.subject.keywordMicroplate
dc.subject.keywordSnO2
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleSurface dielectric tunnel barrier induced by Mn doping in SnO_2 micro- and nanostructures
dc.typejournal article
dc.volume.number215
dspace.entity.typePublication
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication.latestForDiscovery43cbf291-2f80-4902-8837-ea2a9ffaa702

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna73 Postprint+EMB_10_oct_2019.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format

Collections