Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation

dc.contributor.authorEssalhi, M.
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.date.accessioned2023-06-19T13:24:27Z
dc.date.available2023-06-19T13:24:27Z
dc.date.issued2013-04-15
dc.description© 2013 Elsevier B.V. The authors gratefully acknowledge the financial support of the I+D+I Project MAT2010-19249 (Spanish Ministry of Science and Innovation). M. Essalhi is thankful to the Middle East Desalination Research Centre (MEDRC, Project 06-AS-02).
dc.description.abstractSelf-sustained electrospun nanofibrous membranes (ENMs) were prepared using the polymer polyvinylidene fluoride (PVDF) and applied for desalination by direct contact membrane distillation (DCMD). Different electrospinning times were considered to prepare the PVDF ENMs of different thicknesses ranging from 144.4 to 1529.3 mu m. A systematic experimental study on the effects of membrane thickness on the DCMD performance is carried out for the first time. The surface and cross-section of the ENMs were studied by scanning electron microscopy and the mean size of the fibers together with its distribution was determined. The water contact angle, the inter-fiber space, the void volume fraction and the liquid entry pressure of water inside the inter-fiber space were determined by different characterization techniques. It was observed an enhancement of the thickness and the liquid entry pressure of water with the increase of electrospinning time, a decrease of the mean size of the inter-fiber space, whereas no significant changes were observed for the diameter of the electrospun fibers (1.0-1.3 mu m), the void volume fraction (0.85-0.93) and the water contact angle (137.4-141.1 degrees). The size of the inter-fiber space is not uniform throughout the thickness of the ENMs. The effects of the ENMs thickness on the DCMD performance was studied for different feed temperatures and sodium chloride feed aqueous solutions with concentrations up to 60 g/L, which is about two times greater than a typical seawater concentration. The permeate flux of the ENMs is lower for longer electrospinning time and the obtained permeate fluxes in this study are higher than those reported so far for PVDF ENMs.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipMiddle East Desalination Research Centre (MEDRC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25825
dc.identifier.doi10.1016/j.memsci.2013.01.023
dc.identifier.issn0376-7388
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.memsci.2013.01.023
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33573
dc.journal.titleJournal of membrane science
dc.language.isoeng
dc.page.final179
dc.page.initial167
dc.publisherElsevier B. V.
dc.relation.projectIDMAT2010-19249
dc.relation.projectID06-AS-02
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordPore-size distribution
dc.subject.keywordPoly(Vinylidene fluoride)
dc.subject.keywordComposite membranes
dc.subject.keywordAir-gap
dc.subject.keywordFlux
dc.subject.keywordPerformance
dc.subject.keywordScaffolds
dc.subject.keywordRemoval
dc.subject.keywordDevice
dc.subject.keywordMedia
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleSelf-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation
dc.typejournal article
dc.volume.number433
dcterms.references[1] Y. Dzenis, Spinning continuous fibers for nanotechnology, Science 304 (2004) 1917–1919. [2] X. Wang, B. Ding, J. Yu, M. Wang, Engineering biomimetic superhydrophobic surfaces of electrospun nanomateriales, Nano Today 6 (2011) 510–530. [3] A. Formhals, Process and Apparatus for Preparing Artificial Threads, U.S. Patent No. 1, 975, 504, 1934. [4] X. R. Li, J. W. Xie, J. Lipner, X. Y. Yuan, S. Thomopoulos, Y. N. Xia, Nanofiber scaffolds with gradations in mineral content for mimicking the tendom-to-bone insertion site, Nano Lett.9 (2009) 2763–2768. [5] E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders,G. E. Wnek, Release of tetracycline hydrochloride from electrospun poly(-ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Controlled Release 81 (2002) 57–64. [6] A. Yang, X. M. Tao, R. X. Wang, S. C. Lee, C. Surya, Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nano-fibers, Appl. Phys. Lett. 91 (2007) 133110-1–133110-3. [7] S. W. Choi, S. M. Jo, W. S. Lee, Y. R. Kim, An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications, Adv. Mater. 15 (2003) 2027–2032. [8] C. Drew, X. Wang, K. Senecal, H. Schreuder-Gibson, J. He, J. Kumar, L. A. Samuelson, Electrospun photovoltaic cells, J. Macromol. Sci. Pure Appl. Chem. 39 (2002) 1085–1094. [9] X. Yan, G. Liu, F. Liu, B. Z. Tang, H. Peng, A. B. Pakhomov, C. Y. Wong, Super-paramagnetic triblock copolymer/Fe2O3 hybrid nano-fibers, Angew. Chem. Int. Ed. 40 (2001) 3593–3596. [10] R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, Electrospun nanofibrous filtration membrane, J. Membr. Sci. 281 (2006) 581–586. [11] M. G. Hajra, K. Mehta, G. G. Chase, Effects of humidity, temperature, and nano-fibers on drop coalescence in glass fiber, Sep. Purif. Technol. 30 (2003) 79–88. [12] R. S. Barhate, S. Ramakrishna, Nanofibrous filtering media: filtration problems and solutions from tiny materials: review, J. Membr. Sci. 296 (2007) 1–8. [13] R. Wang, Y. Liu, B. Li, B. S. Hsiao, B. Chu, Electrospun nanofibrous membranes for high flux microfiltration, J. Membr. Sci. 392–393 (2012) 167–174. [14] N. N. Bui, M. L. Lind, E. M. V. Hoek, J. R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Membr. Sci. 385–386 (2011) 10–19. [15] K. Yoon, K. Kim, X. Wang, D. Fang, B. S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer 47 (2006) 2434–2441. [16] Z. Zhao, J. Zheng, M. Wang, H. Zhang, C. C. Han, High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds, J. Membr. Sci. 394-395 (2012) 209–217. [17] W. Ritcharoen, P. Supaphol, P. Pavasant, Development of polyelectrolyte multilayer-coated electrospun cellulose acetate fiber mat as composite membranes, Eur. Polm. J. 44 (2008) 3963–3968. [18] M. Khayet, M. C. García Payo, Nanostructured Flat Membranes for Direct Contact Membrane Distillation. PCT/ES2011/000091, WO/2011/117443, 2011. [19] C. Feng, K. C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, J. Membr. Sci. 311 (2008)1–6. [20] C. Feng, K. C. Khulbe, S. Tabe, Volatile organic compound removal by membrane gas stripping using electro-spun nanofiber membrane, Desalination 287 (2012) 98–102. [21] J. A. Prince, G. Singh, D. Rana, T. Matsuura, V. Anbharasi, T. S. Shanmugasundaram, Preparation and characterization of highly hydrophobic poly (vinylidene fluoride)-clay nanocomposite nanofiber membranes (PVDF-clay NNMs) for desalination using direct contact membrane distillation, J. Membr. Sci. 397–398 (2012) 80–86. [22] M. Khayet, T. Matsuura, Membrane Distillation: Principles and Applications, Elsevier, The Netherlands, 2011. [23] M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci. 164 (1–2) (2011) 56–88. [24] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination 287 (2012) 2–18. [25] E. Drioli, E. Curcio, G. Di Profio, State of the art and recent progresses in membrane contactors, Chem. Eng. Res. Des. 83 (A3) (2005) 223–233. [26] M. Khayet, T. Matsuura, J. I. Mengual, M. Qtaishat, Design of novel direct contact membrane distillation membranes, Desalination 192 (2006) 105–111. [27] B. Li, K. K. Sirkar, Novel membrane and device for direct contact membrane distillation-based desalination process, Ind. Eng. Chem. Res. 43 (2004) 5300–5309. [28] B. Li, K. K. Sirkar, Novel membrane and device for vacuum membrane distillation-based desalination process, J. Membr. Sci. 257 (2005) 60–75. [29] K. Y. Wang, T. S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chem. Eng. Sci. 63 (2008) 2587–2594. [30] R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal, J. Membr. Sci. 289 (2007) 210–219. [31] M. Essalhi, M. Khayet, Surface segregation of fluorinated modifying macro- molecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation, J. Membr. Sci. 417– 418 (2012) 163–173. [32] G. Mago, D. M. Kalyon, F. T. Fisher, Membranes of polyvinylidene fluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation, J. Nanomater. (2008), http://dx.doi.org/10.1155/2008/759825. [33] Y. J. Park, Y. S. Kang, C. Park, Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions, Eur. Polym. J. 41 (2005) 1002–1012. [34] M. Khayet, T. Matsuura, Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation, Ind. Eng. Chem. Res. 40 (2001) 5710. [35] S. Al-Obaidani, E. Curcio, F. Macedonio, G. D. Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and costestimation, J. Membr. Sci. 323 (2008) 85-98. [36] L. Martínez, J. M. Rodríguez Maroto, Membrane thickness reduction effects on direct contact membrane distillation performance, J. Membr. Sci. 312 (2008) 143–156. [37] M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electro-spun nanofibers at different electrospinning times: 2. Theoretical analysis, polarization effects and thermal efficiency, J. Membr. Sci. (2013), http://dx. doi.org/10.1016/j.memsci.2013.01.024, This issue. [38] M. Tomaszewska, Preparation and properties of flat-sheet membranes from polyvinylidene fluoride for membrane distillation, Desalination 104 (1996) 1–11. [39] C. Feng, B. Shi, G. Li, Y. Wu, Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation, J. Membr. Sci. 237 (2004)15–24. [40] Y. Wu, Y. Kong, X. Lin, W. Liu, J. Xu, Surface-modified hydrophilic membranes in membrane distillation, J. Membr. Sci. 72 (1992) 189–196. [41] M. Khayet, J. I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation, J. Membr. Sci. 252 (2005) 101–113. [42] M. Qtaishat, D. Rana, M. Khayet, T.Matsuura, Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation, J. Membr. Sci. 327 (2009) 264–273. [43] M. Qtaishat, M. Khayet, T. Matsuura, Novel porous composite hydrophobic/ hydrophilic polysulfone membranes for desalination bydirect contact membrane distillation, J. Membr. Sci. 341 (2009) 139–148. [44] M. Qtaishat,T. Matsuura, M. Khayet, K. C. Khulbe, Comparing the desalination performance of SMM blended polyethersulfone to SMM blended polyetherimide membranes by direct contact membrane distillation, Desalination Water Treat. 5 (2009) 91–98. [45] Z. D. Hendren, J. Brant, M. R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J. Membr. Sci. 331 (2009) 1–10. [46] P. Peng, A. G. Fane, X. Li, Desalination by membrane distillation adopting a hydrophilic membrane, Desalination 173 (2005) 45–54. [47] M. Khayet, A. O. Imdakm, T. Matsuura, Monte Carlo simulation and experimental heat and mass transfer indirect contact membrane distillation, Int. J. Heat Mass Transfer 53 (2010) 1249–1259. [48] J. Phattaranawik, R. Jiraratananon, A. G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci. 215 (2003) 75–85. [49] M. Khayet, C. Cojocaru, M. C. García Payo, Application of response surface methodology and experimental design in direct contact membrane distillation, Ind. Eng. Chem. Res. 46 (2007) 5673–5685. [50] R. W. Schofield, A. G. Fane, C. J. D. Fell, R. Macoun, Factors affecting fluxin membrane distillation, Desalination 77 (1990) 279–294. [51] T. Cath, V. D. Adams, A. E. Childress, Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, J. Membr. Sci. 228 (2004) 5–16. [52] K. W. Lawson, D. R. Lloyd, Membrane distillation: II. Direct contact MD, J. Membr. Sci. 120 (1996)123–133.
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
khayetNO05.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format

Collections