Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum dot spin cellular automata for realizing a quantum processor

dc.contributor.authorBayat, Abolfazl
dc.contributor.authorCreffield, Charles
dc.contributor.authorJefferson, John H
dc.contributor.authorPepper, Michael
dc.contributor.authorBose, Sougato
dc.date.accessioned2023-06-18T06:48:58Z
dc.date.available2023-06-18T06:48:58Z
dc.date.issued2015-10
dc.description©IOP Publishing Ltd. AB was supported by the EPSRC grant EP/K004077/1 (nano-electronic based quantum technologies). SB is supported by an ERC grant. CEC was supported by the MINECO (Spain) through grants FIS2010-21372 and FIS2013-41716-P. MP thanks the EPSRC, and JHJ and CEC acknowledge support from the EU NanoCTM network.
dc.description.abstractWe show how single quantum dots, each hosting a singlet-triplet qubit, can be placed in arrays to build a spin quantum cellular automaton. A fast (∼ 10 ns) deterministic coherent singlet- triplet filtering, as opposed to current incoherent tunneling/slow-adiabatic based quantum gates (operation time ∼ 300 ns), can be employed to produce a two-qubit gate through capacitive (electrostatic) couplings that can operate over significant distances. This is the coherent version of the widely discussed charge and nano-magnet cellular automata, and would increase speed, reduce dissipation, and perform quantum computation while interfacing smoothly with its classical counterpart. This combines the best of two worlds – the coherence of spin pairs known from quantum technologies, and the strength and range of electrostatic couplings from the charge-based classical cellular automata. Significantly our system has zero electric dipole moment during the whole operation process, thereby increasing its charge dephasing time.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipEPSRC
dc.description.sponsorshipERC
dc.description.sponsorshipEU NanoCTM network
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34988
dc.identifier.doi10.1088/0268-1242/30/10/105025
dc.identifier.issn0268-1242
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0268-1242/30/10/105025
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1310.4376
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24284
dc.issue.number10
dc.journal.titleSemiconductor Science and Technology
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.projectIDEP/K004077/1
dc.relation.projectIDFIS2010-21372
dc.relation.projectIDFIS2013-41716-P
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordComputation
dc.subject.keywordField
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuantum dot spin cellular automata for realizing a quantum processor
dc.typejournal article
dc.volume.number30
dcterms.references[1] C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62, 714 (1993); E. P. Blair and C. S. Lent J. Appl. Phys 113, 124302 (2013). [2] R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000). [3] G. Toth and C. S. Lent, Phys. Rev. A 63, 052315 (2001). [4] G. Toth, C. S. Lent, App. Phys. 89 7943 (2001); J. H. Jefferson, M. Fearn, D. L. J. Tipton, and T. P. Spiller Phys. Rev. A 66, 042328 (2002). [5] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). [6] H. Bluhm et al., Nat. Phys. 7, 109 (2011). [7] J. M. Taylor et al., Phys. Rev. B 76, 035315 (2007). [8] R. Hanson, G. Burkard, Phys. Rev. Lett.98, 050502 (2007). [9] J. R. Petta et al., Science 309, 2180 (2005). [10] I. van Weperen, B. D. Armstrong, E. A. Laird, J. Medford, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 107, 030506 (2011). [11] M. d. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Science 336, 202 (2012). [12] J. M. Taylor et al., Nature Phys. 1, 177 (2005). [13] D. K. L. Oi, S. G. Schirmer, A. D. Greentree, and T. M. Stace, Phys. Rev. B 72, 075348 (2005). [14] W. A. Coish and D. Loss, Phys. Rev. B 72, 125337 (2005). [15] C. E. Creffield, W. H¨ausler, J. H. Jefferson, and S. Sarkar, Phys. Rev. B 59, 10719 (1999). [16] S. Foletti et al., Nature Phys. 5, 903 (2009). [17] M. Pioro-Ladriere et al., Nature Phys. 4, 776 (2008). [18] F. Forster, M. M¨uhlbacher, D. Schuh, W. Wegscheider, and S. Ludwig, Phys. Rev. B 91, 195417 (2015). [19] M. J. Bremner et al., Phys. Rev. Lett. 89, 247902 (2002). [20] J. G. Coello, A. Bayat, S. Bose, J. H. Jefferson, C. E. Creffield, Phys. Rev. Lett. 105, 080502 (2010). [21] H. J. Briegel, et al., Nature Physics 5, 19 (2009). [22] X. Hu and S. Das Sarma, Phys. Rev. Lett. 96, 100501 (2006). [23] T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, and R. E. Walkup, Science 268, 1590 (1995); P. G. Piva, G. A. DiLabio, J. L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W. A. Hofer, and R. A. Wolkow, Nature 435, 658 (2005). [24] M. B. Haider, J. L. Pitters, G. A. DiLabio, L. Livadaru, J. Y. Mutus, and R. A. Wolkow, Phys. Rev. Lett. 102, 046805 (2009); J. L. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow, J. Chem. Phys. 134, 064712 (2011). [25] J. Gorman, D. G. Hasko, D. A. Williams, Phys. Rev. Lett. 95, 090502 (2005). [26] K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 103, 016805 (2009).
dspace.entity.typePublication
relation.isAuthorOfPublication3b58cb19-3165-4b80-a65d-1e03b90ebf64
relation.isAuthorOfPublication.latestForDiscovery3b58cb19-3165-4b80-a65d-1e03b90ebf64

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Creffield C 33 PREPRINT.pdf
Size:
895.76 KB
Format:
Adobe Portable Document Format

Collections