Quantum dot spin cellular automata for realizing a quantum
processor
dc.contributor.author | Bayat, Abolfazl | |
dc.contributor.author | Creffield, Charles | |
dc.contributor.author | Jefferson, John H | |
dc.contributor.author | Pepper, Michael | |
dc.contributor.author | Bose, Sougato | |
dc.date.accessioned | 2023-06-18T06:48:58Z | |
dc.date.available | 2023-06-18T06:48:58Z | |
dc.date.issued | 2015-10 | |
dc.description | ©IOP Publishing Ltd. AB was supported by the EPSRC grant EP/K004077/1 (nano-electronic based quantum technologies). SB is supported by an ERC grant. CEC was supported by the MINECO (Spain) through grants FIS2010-21372 and FIS2013-41716-P. MP thanks the EPSRC, and JHJ and CEC acknowledge support from the EU NanoCTM network. | |
dc.description.abstract | We show how single quantum dots, each hosting a singlet-triplet qubit, can be placed in arrays to build a spin quantum cellular automaton. A fast (∼ 10 ns) deterministic coherent singlet- triplet filtering, as opposed to current incoherent tunneling/slow-adiabatic based quantum gates (operation time ∼ 300 ns), can be employed to produce a two-qubit gate through capacitive (electrostatic) couplings that can operate over significant distances. This is the coherent version of the widely discussed charge and nano-magnet cellular automata, and would increase speed, reduce dissipation, and perform quantum computation while interfacing smoothly with its classical counterpart. This combines the best of two worlds – the coherence of spin pairs known from quantum technologies, and the strength and range of electrostatic couplings from the charge-based classical cellular automata. Significantly our system has zero electric dipole moment during the whole operation process, thereby increasing its charge dephasing time. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | EPSRC | |
dc.description.sponsorship | ERC | |
dc.description.sponsorship | EU NanoCTM network | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34988 | |
dc.identifier.doi | 10.1088/0268-1242/30/10/105025 | |
dc.identifier.issn | 0268-1242 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0268-1242/30/10/105025 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/1310.4376 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24284 | |
dc.issue.number | 10 | |
dc.journal.title | Semiconductor Science and Technology | |
dc.language.iso | eng | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.projectID | EP/K004077/1 | |
dc.relation.projectID | FIS2010-21372 | |
dc.relation.projectID | FIS2013-41716-P | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Computation | |
dc.subject.keyword | Field | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Quantum dot spin cellular automata for realizing a quantum processor | |
dc.type | journal article | |
dc.volume.number | 30 | |
dcterms.references | [1] C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62, 714 (1993); E. P. Blair and C. S. Lent J. Appl. Phys 113, 124302 (2013). [2] R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000). [3] G. Toth and C. S. Lent, Phys. Rev. A 63, 052315 (2001). [4] G. Toth, C. S. Lent, App. Phys. 89 7943 (2001); J. H. Jefferson, M. Fearn, D. L. J. Tipton, and T. P. Spiller Phys. Rev. A 66, 042328 (2002). [5] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). [6] H. Bluhm et al., Nat. Phys. 7, 109 (2011). [7] J. M. Taylor et al., Phys. Rev. B 76, 035315 (2007). [8] R. Hanson, G. Burkard, Phys. Rev. Lett.98, 050502 (2007). [9] J. R. Petta et al., Science 309, 2180 (2005). [10] I. van Weperen, B. D. Armstrong, E. A. Laird, J. Medford, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 107, 030506 (2011). [11] M. d. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Science 336, 202 (2012). [12] J. M. Taylor et al., Nature Phys. 1, 177 (2005). [13] D. K. L. Oi, S. G. Schirmer, A. D. Greentree, and T. M. Stace, Phys. Rev. B 72, 075348 (2005). [14] W. A. Coish and D. Loss, Phys. Rev. B 72, 125337 (2005). [15] C. E. Creffield, W. H¨ausler, J. H. Jefferson, and S. Sarkar, Phys. Rev. B 59, 10719 (1999). [16] S. Foletti et al., Nature Phys. 5, 903 (2009). [17] M. Pioro-Ladriere et al., Nature Phys. 4, 776 (2008). [18] F. Forster, M. M¨uhlbacher, D. Schuh, W. Wegscheider, and S. Ludwig, Phys. Rev. B 91, 195417 (2015). [19] M. J. Bremner et al., Phys. Rev. Lett. 89, 247902 (2002). [20] J. G. Coello, A. Bayat, S. Bose, J. H. Jefferson, C. E. Creffield, Phys. Rev. Lett. 105, 080502 (2010). [21] H. J. Briegel, et al., Nature Physics 5, 19 (2009). [22] X. Hu and S. Das Sarma, Phys. Rev. Lett. 96, 100501 (2006). [23] T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, and R. E. Walkup, Science 268, 1590 (1995); P. G. Piva, G. A. DiLabio, J. L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W. A. Hofer, and R. A. Wolkow, Nature 435, 658 (2005). [24] M. B. Haider, J. L. Pitters, G. A. DiLabio, L. Livadaru, J. Y. Mutus, and R. A. Wolkow, Phys. Rev. Lett. 102, 046805 (2009); J. L. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow, J. Chem. Phys. 134, 064712 (2011). [25] J. Gorman, D. G. Hasko, D. A. Williams, Phys. Rev. Lett. 95, 090502 (2005). [26] K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 103, 016805 (2009). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3b58cb19-3165-4b80-a65d-1e03b90ebf64 | |
relation.isAuthorOfPublication.latestForDiscovery | 3b58cb19-3165-4b80-a65d-1e03b90ebf64 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Creffield C 33 PREPRINT.pdf
- Size:
- 895.76 KB
- Format:
- Adobe Portable Document Format