Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Using AI tools to fill an incomplete well log dataset: A workflow

dc.contributor.authorUzkeda Apesteguia, Hodei
dc.contributor.authorVidal Royo, O.
dc.contributor.authorAmilibia, A.
dc.date.accessioned2023-06-22T12:50:31Z
dc.date.available2023-06-22T12:50:31Z
dc.date.issued2023-05
dc.description.abstractOne issue commonly found when working with well log data is the irregular abundance/availability of the different recorded parameters. This is especially applicable when working with datasets collected in different campaigns that may span through the years, even decades, or different companies. Artificial Intelligence may be useful to fill gaps in the original database, resulting in a more complete, standardised one. In this work we present a workflow that can be followed to fills gaps in a dataset using different AI techniques. It consists of four main steps: 1) feature combination selection; 2) hyperparameter tuning; 3) performance assessment and best option choice; 4) blind testing. The process can be performed iteratively, successively populating the database with missing parameters, starting with those for which there are more available training data and whose results are more reliable. In this work, we present an example in which we filled an incomplete dataset consisting of wells provided by the UK National Data Repository (NDR) of the Oil & Gas Authority (OGA). The performance of some of the most commonly used artificial intelligence methods (support vector machine, random forest, multi-layer perceptron) was tested varying their hyperparameters until reaching an adequate result.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipAgencia Estatal de Investigación
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77527
dc.identifier.doi10.1016/j.jappgeo.2023.104992
dc.identifier.issn0926-9851
dc.identifier.officialurlhttps://doi.org/10.1016/j.jappgeo.2023.104992
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73243
dc.issue.number104992
dc.journal.titleJournal of applied geophysics
dc.language.isoeng
dc.publisherElsevier Science B.V., Amsterdam.
dc.relation.projectIDPTQ2018–009983
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu550.832
dc.subject.keywordArtificial intelligence
dc.subject.keywordPetrophysical properties
dc.subject.keywordSupervised learning
dc.subject.keywordWell logs
dc.subject.ucmGeología estratigráfica
dc.subject.ucmPetrología
dc.subject.unesco2506.19 Estratigrafía
dc.titleUsing AI tools to fill an incomplete well log dataset: A workflow
dc.typejournal article
dc.volume.number212
dspace.entity.typePublication
relation.isAuthorOfPublication85e34a50-64c4-4102-ba1f-093dc234549c
relation.isAuthorOfPublication.latestForDiscovery85e34a50-64c4-4102-ba1f-093dc234549c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Using AI tools to fill an incomplete well log dataset A workflow.pdf
Size:
15.18 MB
Format:
Adobe Portable Document Format

Collections