Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stochastic Topology Design Optimization for Continuous Elastic Materials

dc.contributor.authorCarrasco, Miguel
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2023-06-15T07:49:05Z
dc.date.available2023-06-15T07:49:05Z
dc.date.issued2015
dc.description.abstractIn this paper, we develop a stochastic model for topology optimization. We find robust structures that minimize the compliance for a given main load having a stochastic behavior. We propose a model that takes into account the expected value of the compliance and its variance. We show that, similarly to the case of truss structures, these values can be computed with an equivalent deterministic approach and the stochastic model can be transformed into a nonlinear programming problem, reducing the complexity of this kind of problems. First, we obtain an explicit expression (at the continuous level) of the expected compliance and its variance, then we consider a numerical discretization (by using a finite element method) of this expression and finally we use an optimization algorithm. This approach allows to solve design problems which include point, surface or volume loads with dependent or independent perturbations. We check the capacity of our formulation to generate structures that are robust to main loads and their perturbations by considering several 2D and 3D numerical examples. To this end, we analyze the behavior of our model by studying the impact on the optimized solutions of the expected-compliance and variance weight coefficients, the laws used to describe the random loads, the variance of the perturbations and the dependence/independence of the perturbations. Then, the results are compared with similar ones found in the literature for a different modeling approach.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28198
dc.identifier.doi10.1016/j.cma.2015.02.003
dc.identifier.issn0045-7825
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0045782515000444
dc.identifier.urihttps://hdl.handle.net/20.500.14352/26.2
dc.journal.titleComputer Methods in Applied Mechanics and Engineering
dc.language.isospa
dc.page.final154
dc.page.initial131
dc.publisherElsevier
dc.relation.projectIDMTM2011-22658
dc.relation.projectIDP12-TIC301
dc.relation.projectIDFONDECYT 1130905.
dc.rights.accessRightsopen access
dc.subject.cdu519.6
dc.subject.keywordTopology optimization
dc.subject.keywordStructural optimization
dc.subject.keywordStochastic programming
dc.subject.keywordFinite element method
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis numérico
dc.subject.unesco12 Matemáticas
dc.subject.unesco1206 Análisis Numérico
dc.titleStochastic Topology Design Optimization for Continuous Elastic Materials
dc.typejournal article
dc.volume.number289
dcterms.references[1] L. Landau, E. M. Lifshitz, Theory of Elasticity, Oxford, England: Butterworth Heinemann, 1986. [2] M. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer-Verlag, Berlin, 2003. [3] M. Bendsøe, Optimization of structural topology, shape, and material, Springer, 1995. [4] S. Conti, H. Held, M. Pach, M. Rumpf, R. Schultz, Shape optimization under uncertainty, a stochastic programming perspective, SIAM Journal on Optimization 19 (4) (2008) 1610–1632. [5] J. Alberty, C. Carstensen, S. A. Funken, , R. Klose, Matlab implementation of the finite element method in elasticity, Computing 3 (69) (2002) 269–263. [6] P. Ciarlet, The Finite Element Method For Elliptic Problems, North- Holland, Amsterdam, 1980. [7] P. Ciarlet, Mathematical Elasticity, Vol. I, Three Dimensional Elasticity., North-Holland, Amsterdam, Amsterdam, 1988. [8] F. Alvarez, M. Carrasco, Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim. 29 (6) (2005) 470–476. [9] M. Carrasco, Diseño óptimo de estructuras reticulares en elasticidad lineal v´?a teor´?a de la dualidad. estudio te´orico y num´erico, Ph.D. thesis, Universidad de Chile, engineering Degree Thesis (2003). [10] M. Carrasco, B. Ivorra, A. M. Ramos, A variance-expected compliance model for structural optimization, J. Optim. Theory Appl. 152 (1) (2012) 136–151. [11] M. Carrasco, B. Ivorra, R. Lecaros, A. M. Ramos, An expected compliance model for topology optimization, Differ. Equ. Appl 4 (1) (2012) 111–120. [12] J. Zhao, C. Wang, Robust topology optimization of structures under loading uncertainty, American Institute of Aeronautics and Astronautics Journal 2 (52) (2014) 398–407. [13] G. Allaire, C. Dapogny, A linearized approach to worst-case design in parametric and geometric shape optimization, Mathematical Models and Methods in Applied Sciences in press (2014) 1–58. [14] J. K. Guest, T. Igusa, Structural optimization under uncertain loads and nodal locations, Computer Methods in Applied Mechanics and Engineering 198 (1) (2008) 116 – 124, computational Methods in Optimization Considering Uncertainties. [15] J. Zhao, C. Wang, Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices, Computer Methods in Applied Mechanics and Engineering 273 (1) (2014) 204 – 218. [16] P. D. Dunning, H. A. Kim, G. Mullineux, Introducing loading uncertainty in topology optimization, American Institute of Aeronautics and Astronautics Journal 49 (4) (2011) 760–768. [17] P. D. Dunning, H. A. Kim, Robust topology optimization: Minimization of expected and variance of compliance, American Institute of Aeronautics and Astronautics Journal 51 (11) (2014) 2656–2664. [18] P. D. Dunning, H. A. Kim, Robust topology optimization: Minimization of expected and variance of compliance, American Institute of Aeronautics and Astronautics Journal 51 (11) (2014) 2656–2664. [19] J. Zhao, C. Wang, Robust structural topology optimization under random field loading uncertainty, Structural and Multidisciplinary Optimization 50 (3) (2014) 517–522. [20] S. Chen, W. Chen, S. Lee, Level set based robust shape and topology optimization under random field uncertainties, Structural and Multidisciplinary Optimization 41 (4) (2010) 507–524. [21] B. Ivorra, B. Mohammadi, A. M. Ramos, Optimization strategies in credit portfolio management, Journal Of Global Optimization. 2 (43) (2009) 415–427. [22] A. M. Ramos, Introducci´on al an´alisis matem´atico del m´etodo de elementos finitos, Editorial Complutense, 2012. [23] O. Sigmund, A 99 line topology optimization code written in matlab, Structural and Multidisciplinary Optimization 2 (21) (2001) 120–127. [24] K. Liu, A. Tovar, An efficient 3d topology optimization code written in matlab, Structural and Multidisciplinary Optimization (2014) 1–22. [25] B. Ivorra, D. Hertzog, B. Mohammadi, J. Santiago, Semi-deterministic and genetic algorithms for global optimization of microfluidic proteinfolding devices, International Journal for Numerical Methods in Engineering 66 (2) (2006) 319–333. [26] O. Sigmund, On the design of compliant mechanisms using topology optimization, Mechanics of Structures and Machines 25 (4) (1997) 493–524.
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4431.pdf
Size:
559.09 KB
Format:
Adobe Portable Document Format

Collections

Version History

Now showing 1 - 3 of 3
VersionDateSummary
3*
2023-06-15 09:49:05
Version created in EPrints
2023-06-15 08:21:20
Version created in EPrints
2023-06-15 08:21:20
Version created in EPrints
* Selected version