Advanced migraine prediction simulation system
dc.conference.date | 9-12 Jul 2017 | |
dc.conference.place | Bellevue, Estados Unidos | |
dc.conference.title | SummerSim '17: Summer Simulation Multi-Conference | |
dc.contributor.author | Pagán Ortiz, Josué | |
dc.contributor.author | Moya Fernández, José Manuel | |
dc.contributor.author | Risco Martín, José Luis | |
dc.contributor.author | Ayala Rodrigo, José Luis | |
dc.date.accessioned | 2024-01-23T16:18:13Z | |
dc.date.available | 2024-01-23T16:18:13Z | |
dc.date.issued | 2017 | |
dc.description.abstract | In the Internet of Things (IoT) era, there is growing interest in wireless monitoring sensors for detection, classification and prediction of health symptoms. The prediction of symptoms in chronic diseases such as migraines brings new hope to improve patients' lives. The prediction of a migraine symptomatic event through monitoring hemodynamic variables has been previously demonstrated in our earlier work. In this paper, a simulation-based approach for a real-time migraine prediction system is described. The simulation has been implemented using the specifications of the formal description language Discrete EVent Systems (DEVS). The simulation system is a proof of concept that is ready for testing in a real-world ambulatory monitoring environment. The results obtained encourage developing a hardware/software (HW/SW) co-simulation system that incorporates Hardware-in-the-Loop (HIL) components as prior step to the expensive and slow hardware implementation of a complete migraine prediction device. When such a system is used in a real-time setting, it can simulate failures in sensors and trigger alarms for active patient response. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (España) | |
dc.description.status | pub | |
dc.identifier.citation | Josué Pagán, José M. Moya, José L. Risco-Martín, and José L. Ayala. 2017. Advanced migraine prediction simulation system. In Proceedings of the Summer Simulation Multi-Conference (SummerSim '17). Society for Computer Simulation International, San Diego, CA, USA, Article 24, 1–12. | |
dc.identifier.doi | 10.5555/3140065.3140089 | |
dc.identifier.officialurl | https://doi.org/10.5555/3140065.3140089 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/94860 | |
dc.language.iso | eng | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI15%2F01976/ES/Monitorización ambulatoria no invasiva de variables biométricas y biofísicas y como método para la predicción de una crisis de migraña/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-65277-R/ES/COMPUTACION HETEROGENEA EFICIENTE: DEL PROCESADOR AL DATACENTER/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-33892/ES/TECNOLOGIAS HW%2FSW PARA LA EFICIENCIA ENERGETICA EN SISTEMAS DE COMPUTACION DISTRIBUIDOS/ | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | restricted access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keyword | Migraine prediction | |
dc.subject.keyword | Failure detector | |
dc.subject.keyword | Robust system | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.subject.unesco | 1203.26 Simulación | |
dc.title | Advanced migraine prediction simulation system | |
dc.type | conference paper | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2e4c4d42-c8d8-450e-bf6b-28f327b89a44 | |
relation.isAuthorOfPublication | b18c2bd8-52be-4d79-bd8b-dbd8e970d703 | |
relation.isAuthorOfPublication | d73a810d-34c3-440e-8b5f-e2a7b0eb538f | |
relation.isAuthorOfPublication.latestForDiscovery | 2e4c4d42-c8d8-450e-bf6b-28f327b89a44 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Advanced_migraine_prediction.pdf
- Size:
- 975.47 KB
- Format:
- Adobe Portable Document Format